Xiaoyu Xie, Ziyu Huo, Erin R. Crater, Robert B. Moore, Rong Tong
{"title":"Enantioselective polymerization of racemic lactide for stereocomplex poly(lactic acid)","authors":"Xiaoyu Xie, Ziyu Huo, Erin R. Crater, Robert B. Moore, Rong Tong","doi":"10.1016/j.checat.2025.101487","DOIUrl":null,"url":null,"abstract":"Poly(lactic acid) (PLA) is a leading degradable and biocompatible polymer in the plastics industry. Stereocomplex PLA—a mixture of poly(<span>l</span>-lactic acid) and poly(<span>d</span>-lactic acid)—exhibits enhanced mechanical toughness and an elevated melting temperature compared to other PLA stereoisomers. However, the lack of highly enantioselective catalysts has prevented the single-step production of stereocomplex PLA from inexpensive racemic lactide. This work presents the discovery of chiral aluminum catalysts that are highly active for enantioselective lactide polymerization. Using a mixture of chiral catalysts with opposite enantioselectivities allowed for the single-step production of highly isotactic stereocomplex PLA from racemic lactide. The obtained stereocomplex PLA was tougher and more ductile than poly(<span>l</span>-lactic acid), stereoblock PLA, and even conventionally blended stereocomplex PLA. Computational studies revealed that the enantiocontrol exerted by the bimetallic aluminum complexes arises from dispersion interactions between the ligand and lactide within the catalyst cleft.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"79 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(lactic acid) (PLA) is a leading degradable and biocompatible polymer in the plastics industry. Stereocomplex PLA—a mixture of poly(l-lactic acid) and poly(d-lactic acid)—exhibits enhanced mechanical toughness and an elevated melting temperature compared to other PLA stereoisomers. However, the lack of highly enantioselective catalysts has prevented the single-step production of stereocomplex PLA from inexpensive racemic lactide. This work presents the discovery of chiral aluminum catalysts that are highly active for enantioselective lactide polymerization. Using a mixture of chiral catalysts with opposite enantioselectivities allowed for the single-step production of highly isotactic stereocomplex PLA from racemic lactide. The obtained stereocomplex PLA was tougher and more ductile than poly(l-lactic acid), stereoblock PLA, and even conventionally blended stereocomplex PLA. Computational studies revealed that the enantiocontrol exerted by the bimetallic aluminum complexes arises from dispersion interactions between the ligand and lactide within the catalyst cleft.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.