{"title":"The Unseen Threat of the Synergistic Effects of Microplastics and Heavy Metals in Aquatic Environments: A Critical Review","authors":"Aderemi Timothy Adeleye, Md Mezbaul Bahar, Mallavarapu Megharaj, Cheng Fang, Mohammad Mahmudur Rahman","doi":"10.1007/s40726-024-00298-7","DOIUrl":"10.1007/s40726-024-00298-7","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>The synergistic effects of microplastics (MPs) and heavy metals are becoming major threats to aquatic life and human well-being. Therefore, understanding synergistic interactions between MPs and heavy metals is crucial to comprehend their environmental impacts.</p><h3>Recent Findings</h3><p>The mechanisms such as electrostatic attraction, surface interactions, ion exchange, hydrogen bonding, hydrophobic forces, and π–π interactions behind the synergistic effects of MPs and heavy metals were critically reviewed and justified. In addition, the roles of surface chemistry in these interactions were also emphasized. Finally, efficient remediation techniques aligning with a circular economy-based initiative to promote sustainable solutions were recommended to mitigate plastic-heavy metal pollution to achieve a cleaner environment.</p><h3>Summary</h3><p>This review examines the combined impact of MPs and heavy metals in aquatic ecosystems, detailing their mechanistic interactions, and consequences with proposed sustainable solutions. Additionally, this review highlights the MP-heavy metal contamination risks and emphasizes the need for further research to safeguard aquatic life and human health.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 3","pages":"478 - 497"},"PeriodicalIF":6.4,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-024-00298-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anisa Ratnasari, Isti Faizati Zainiyah, Samrendra Singh Thakur, Ramaraj Boopathy
{"title":"Bio-prospective of Acidophile Microorganisms in Biodegradation of NSAIDs","authors":"Anisa Ratnasari, Isti Faizati Zainiyah, Samrendra Singh Thakur, Ramaraj Boopathy","doi":"10.1007/s40726-024-00301-1","DOIUrl":"10.1007/s40726-024-00301-1","url":null,"abstract":"<div><p>The presence of nonsteroidal anti-inflammatory drugs (NSAIDs) in various environments poses a significant challenge due to their widespread volume, complexity, and harmful effects on environment and human health. NSAIDs elimination from the ecosystem has become an urgent priority. Therefore, the present study focuses on evaluating specific microorganisms capable of effectively remediating pharmaceutical wastewater and reducing NSAIDs contamination. Acidophile microorganisms exhibit unique survival abilities in acidic conditions and demonstrate the potential for degrading pharmaceutical compounds in wastewater. These microorganisms utilize these compounds as their sole carbon and energy sources, converting them into valuable bioproducts. Acidophile microorganisms display various functional processes, including biodegradation, biotransformation, biosorption, and bioaccumulation. It is noteworthy that bioaccumulation is mostly found in microalgae since they have more protein to uptake NSAIDs. A detailed understanding of bioaccumulation in acidophile microorganisms is recommended as degradation mechanisms. In addition, metabolites can be acknowledged by omics approaches since it has yet to be exposed.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"189 - 206"},"PeriodicalIF":6.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shamima Moazzem, Muhammed Bhuiyan, Shobha Muthukumaran, Jill Fagan, Veeriah Jegatheesan
{"title":"A Critical Review of Nature-Based Systems (NbS) to Treat Stormwater in Response to Climate Change and Urbanization","authors":"Shamima Moazzem, Muhammed Bhuiyan, Shobha Muthukumaran, Jill Fagan, Veeriah Jegatheesan","doi":"10.1007/s40726-024-00297-8","DOIUrl":"10.1007/s40726-024-00297-8","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Rapid urban development significantly contributes to the alterations in watershed hydrology by removing vegetation and soil, increasing imperviousness, and reducing natural infiltration capacity. It also generates more pollutants that deteriorate the stormwater quality. In addition, the escalation of the hydrological cycle due to climate change is expected to lead to more frequent intense rainfall. This extreme rainfall generates more stormwater runoff and releases more pollutants from the catchment, which can degrade downstream waterways. Therefore, it is crucial to assess the impact of urbanization and climate change on both the quality and quantity of stormwater to effectively mitigate their severe consequences. Nature-based solutions (NbS) for stormwater management are environmentally sustainable options to capture and treat pollutants from stormwater, reduce stormwater volume, and mitigate floods. However, significant modifications are needed in the existing nature-based treatment solutions to control floods and remove pollutants in rapid urban landscapes and extreme climate conditions. This review summarizes the current state of knowledge by (1) examining the potential impacts of urbanization and climate change on the stormwater quantity and quality; (2) assessing the performance of nature-based treatment systems to treat stormwater pollutants; (3) comparing the effectiveness among different nature-based treatment systems and identifying the best ones depending on the conditions; and (4) suggesting improvements to the design of wetlands to capture higher proportions of pollutants under different scenarios.</p><h3>Recent Findings</h3><p>A review of the literature indicates that densely built-up catchments produce increased runoff from impervious surfaces. In addition, industrial catchments generate higher total suspended solids (TSS) loads, while residential and commercial catchments generate more nutrients, such as nitrogen and phosphorous. Besides this, climate change is projected to increase annual runoff volume and mean annual concentrations of pollutants. For example, in Difficult Run watershed, the largest watershed in Fairfax County VA, an increase of 6.5% annual runoff volume and 7.6%, 7.1%, and 8.1% total suspended solids, nitrogen, and phosphorus mean annual concentrations, respectively, are expected for the simulated time period between 2041 and 2068. NbS such as swales, bioretention, detention ponds, and constructed wetlands have been implemented to remove the pollutants from stormwater, and constructed wetlands (CWs) have shown promising results in removing pollutants compared to other nature-based treatment systems. However, the efficiency of CWs can be improved by changing the filter media and vegetation and modifying the design to adapt to these adverse scenarios generated by rapid urbanization and climate change.</p><h3>Summary</h3><p>In the past, researchers have typically examined the impa","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"286 - 311"},"PeriodicalIF":6.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zilin Chen, Ziyue Cheng, Peirui Liu, Xiangliang Pan
{"title":"Biological Effects and Environmental Behaviors of Medium- and Long-Chain Chlorinated Paraffins: A Brief Review","authors":"Zilin Chen, Ziyue Cheng, Peirui Liu, Xiangliang Pan","doi":"10.1007/s40726-024-00302-0","DOIUrl":"10.1007/s40726-024-00302-0","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>As short-chain chlorinated paraffins (SCCPs) have been classified as persistent organic pollutants (POPs), there has been a significant surge in the utilization of medium- and long-chain chlorinated paraffins (MCCPs and LCCPs) as potential alternatives. However, their environmental and ecological risks have gained more prominence. Consequently, the objective of this review is to provide a comprehensive overview of the biological effects, migration, and transformation of chlorinated paraffins (CPs), with a particular focus on comparing the similarities and differences among SCCPs, MCCPs, and LCCPs.</p><h3>Recent Findings</h3><p>According to the latest research findings, it has been discovered that MCCPs and LCCPs possess persistence, bioaccumulation, and long-distance migration abilities, similar to SCCPs. Moreover, these research results demonstrate that the toxicity of MCCPs and LCCPs, especially those components with high chlorine content, is equally significant as that of SCCPs. Furthermore, MCCPs and LCCPs in the environment can undergo biotransformation and photodegradation processes, resulting in the generation of toxic substances such as very short-chain chlorinated paraffins (vSCCPs), SCCPs, and chlorinated alcohols.</p><h3>Summary</h3><p>This review comprehensively examines the biological toxicity, health risks, migration, and transformation of CPs with different chain lengths. In addition, the study analyzes the sources and trends of vSCCPs, SCCPs, MCCPs, and LCCPs in different environment media. It should be noted that SCCPs pose a greater health risk to aquatic organisms, whereas MCCPs are particularly concerning for infants. On the other hand, LCCPs present a higher health risk to terrestrial organisms, especially those situated at the top of the food chain. Based on the drawbacks of current research, outlook for future research was proposed. This review is expected to provide a reference for more scientific and reasonable evaluation of the CPs environment risk.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"127 - 138"},"PeriodicalIF":6.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140124670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javad Toghiani, Sajjad Malekzadeh, Neda Jamali, Neda Afsham, Narges Fallah, Amir Mahboubi, Bahram Nasernejad, Mohammad J. Taherzadeh, Sepideh Oladzad
{"title":"Novel Advanced Oxidation Processes (AOPs) as Lignocellulosic Biomass Pretreatment Approaches and Their Sustainability Assessment: A Review","authors":"Javad Toghiani, Sajjad Malekzadeh, Neda Jamali, Neda Afsham, Narges Fallah, Amir Mahboubi, Bahram Nasernejad, Mohammad J. Taherzadeh, Sepideh Oladzad","doi":"10.1007/s40726-024-00295-w","DOIUrl":"10.1007/s40726-024-00295-w","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Lignocellulosic biomass, as a green and sustainable resource, can be used in biorefineries to produce bio-based products. The complex and resistant structure of lignocellulose prevents microorganisms access to carbohydrates in the biorefinery’s main processes, necessitating pretreatment. Different conventional pretreatment methods (physical, physico-chemical, chemical, and biological methods) and also novel advanced oxidation processes (AOPs) and their sustainability, environmental impact, economic viability, energy efficiency and, commercialization state are investigated in this review.</p><h3>Recent Findings</h3><p>Due to various reviews and studies on conventional pretreatment methods, they are briefly described with proper data. As the mechanisms and principle of operation of AOPs were investigated, during the AOPs pretreatment methods, hydroxyl radicals (·OH) are generated sufficiently to decompose lignocellulosic structure through oxidation. In this paper, we review the different AOPs, i.e., Fenton process, ozonation, photochemical, wet air oxidation, ultrasound, and electrochemical, which are recently used in the pretreatment of lignocellulose. Also, the achievement of different AOPs pretreatment research studies and general trends governing the process operating conditions are presented briefly in tables. Moreover, lignocellulosic biomass pretreatment sustainability assessment approaches such as life cycle assessment (LCA) and economic value and environmental impact (EVEI) are discussed. Although no study compared the sustainability aspects of different AOPs with conventional methods, this review generally addresses them. Further, environmental, energetic, and economic aspects of AOPs methods have been compared as important criteria in selecting a pretreatment method.</p><h3>Summary</h3><p>This review provides a thorough insight into the biorefinery’s bottleneck, pretreatment, and comprehensively investigated mechanisms, principle of operation, sustainability, environmental, economic, energy, and commercialization state of AOPs methods.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"207 - 246"},"PeriodicalIF":6.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial-Based Treatment of Kitchen Waste and Kitchen Wastewater: State-of-the-Art Progress and Emerging Research Prospects Related to Microalgae and Bacteria","authors":"Zeyuan Wang, Yu Hong","doi":"10.1007/s40726-024-00300-2","DOIUrl":"10.1007/s40726-024-00300-2","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review intends to recapitulate the pretreatment measures of kitchen waste and kitchen wastewater (KWAKWW). Furthermore, this review also separately summarizes the ascendancy of using bacteria, microalgae and microalgae-bacteria consortia to treat KWAKWW, and corresponding emerging reinforcement strategies.</p><h3>Recent Findings</h3><p>Tremendous amount of KWAKWW are annually generated in the whole world. Wherein roughly 1.3 billion tons of kitchen waste (KW) are dumped and which were forecasted that would increase to about 2.5 billion tons by 2025. In addition, KWAKWW have the characteristics of high content of refractory organic matter (e.g., oil and cellulose), water (commonly outstrip 70%), and salt, which is difficult for bacteria or microalgae to treat. Consequently, it is essential to perform efficacious pretreatment measures to boost the efficiency of post-treatment. Utilizing bacteria, microalgae, and microalgae-bacteria consortia to treat KWAKWW is considered an efficient strategy due to ascendancy of puissant deep purification ability, excellent resource appreciation effect, and low operation costs. For instance, bacteria could produce leastways four kinds of products through KWAKWW; multiple studies indicated that microalgae generally could remove exceed 70% of nutrients of KWAKWW; one research manifested that microalgae-bacteria consortia retrenched 46% of the demand about dissolved oxygen (DO). Nevertheless, the above microbial treatment systems still have some inherent drawbacks such as poor impact resistance. Fortunately, metabolic engineering and other strengthen strategies can efficaciously upgrade the nutrient removal and resource utilization performance of bacteria, microalgae, and microalgae-bacteria consortia. For example, one research shown that the 1-butanol productivity of original bacteria remarkably increased by 93.48–171.74% draw support from metabolic engineering.</p><h3>Summary</h3><p>A total of 221 papers related to the content of this review were searched through Web of Science (http://apps.webofknowledge.com). What is more, specific data that emerged on this review were all extracted from the above-searched papers. The mechanisms and effect of hydrothermal carbonization (HTC) and other four pretreatment measures are introduced by this review in detail. The preponderance of utilizing bacteria, microalgae, and microalgae-bacteria consortia to treat KWAKWW are comprehensively evaluated mainly from the perspectives of nutrient purification and resource utilization. Four state-of-the-art strengthen strategies like machine learning are then introduced. Finally, the current challenges in KWAKWW treatment are summarized from five aspects, and future concrete improvement directions are also provided. Overall, this review outlines the state-of-the-art research progress of KWAKWW treatment by bacteria and microalgae and tenders corresponding implementation schemes for improving KWAKWW t","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"139 - 171"},"PeriodicalIF":6.4,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xubing Cao, Jiumeng Liu, Yuliang Wu, Yuan Cheng, Mei Zheng, Kebin He
{"title":"A Review on Brown Carbon Aerosol in China: From Molecular Composition to Climate Impact","authors":"Xubing Cao, Jiumeng Liu, Yuliang Wu, Yuan Cheng, Mei Zheng, Kebin He","doi":"10.1007/s40726-024-00293-y","DOIUrl":"10.1007/s40726-024-00293-y","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>As an important type of light-absorbing aerosol in the atmosphere, brown carbon (BrC) is an effective driver for climate change. Field observations of BrC typically involve the extraction of filter samples (e.g., using water and methanol), followed by optical and chemical analyses. This review summarizes the concentration measurements, optical properties, and chemical characteristics of BrC in China, based on results from the extraction approach.</p><h3>Recent Findings</h3><p>We started with measurement techniques for the determination of BrC concentration and compared the extraction efficiencies of different solvents. Then we investigated the temporal and spatial variations of BrC’s absorption Ångström exponent (AAE) and mass absorption efficiency at 365 nm (MAE<sub>365</sub>), two parameters relevant to climate studies. AAE and MAE<sub>365</sub> were found to be mainly influenced by the type of solvent used and BrC sources, respectively. Using the observed AAE and MAE<sub>365</sub>, BrC was demonstrated to be a non-negligible contributor to climate forcing. Finally, BrC chromophores were discussed on a molecular level, with focus on the nitrogen-containing compounds and polycyclic aromatic hydrocarbons.</p><h3>Summary</h3><p>Despite studies on BrC concentrations measurements were widely conducted, standardized methods remain inconclusive. Regarding the optical properties of BrC, MAE<sub>365</sub> exhibited significant temporal and spatial patterns, while AAE showed the opposite results. Through chemical characterization, BrC chromophores were identified and their association with optical properties was highlighted. This review contributes to the understanding of BrC properties and has implications for future studies on BrC.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"326 - 343"},"PeriodicalIF":6.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Air Pollution Interactions with Weather and Climate Extremes: Current Knowledge, Gaps, and Future Directions","authors":"Cenlin He, Rajesh Kumar, Wenfu Tang, Gabriele Pfister, Yangyang Xu, Yun Qian, Guy Brasseur","doi":"10.1007/s40726-024-00296-9","DOIUrl":"10.1007/s40726-024-00296-9","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>During the past decade, weather and climate extremes, enhanced by climate change trends, have received tremendous attention because of their significant impacts on socio-economy, public health, and ecosystems. At the same time, many parts of the world still suffer from severe air pollution issues. However, whether and how air pollutants play a role in weather and climate systems through complex interactions and feedbacks with meteorology and ecosystems remains an open question. So far, only a relatively small number of studies have been conducted to understand and quantify air pollution interactions with weather and climate extremes. As a result, there is limited process-level knowledge of this topic and associated mechanisms. This review paper provides a concise synthesis of recent scientific advances, current knowledge gaps, and future directions on air pollution interactions with weather and climate extremes, such as extreme precipitation, floods, droughts, wildfires, and heat waves.</p><h3>Recent Findings</h3><p>There is evidence (albeit limited) that air pollution can contribute to or interact with each of the aforementioned extremes, and several possible mechanisms (e.g., physical, thermodynamical, dynamical, chemical, and ecological processes) have been identified and proposed to explain their relationships. However, there are still substantial knowledge gaps that need to be addressed in future studies, which will benefit from enhanced observational and modeling capabilities as well as interdisciplinary collaborations.</p><h3>Summary</h3><p>Overall, the air pollution interactions with weather and climate extremes are currently under-studied and less understood. More future research is needed for process-level investigations to improve the mechanistic understanding on this topic.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 3","pages":"430 - 442"},"PeriodicalIF":6.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somayeh Bakhtiari, Marjan Salari, Meysam Shahrashoub, Asma Zeidabadinejad, Gaurav Sharma, Mika Sillanpää
{"title":"A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications","authors":"Somayeh Bakhtiari, Marjan Salari, Meysam Shahrashoub, Asma Zeidabadinejad, Gaurav Sharma, Mika Sillanpää","doi":"10.1007/s40726-023-00290-7","DOIUrl":"10.1007/s40726-023-00290-7","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Environmental pollution stemming from industrial, agricultural, and domestic activities is constantly increasing. The removal of these hazardous pollutants from the environment is inevitable, so finding and developing convenient, cost-effective, and biocompatible treatment methods is imperative. As emerging adsorbents, green nanoparticles (NPs) have received significant attention in recent years due to their biocompatibility and promising capability for removing pollutants such as heavy metals from aqueous solutions. This study aims to provide a comprehensive and coherent review of the heavy metals removal via an adsorption technique using green nanoparticles, focusing on their synthesis and adsorption mechanisms.</p><h3>Recent Findings</h3><p>Currently, plants and microorganisms are used to synthesize green nano-adsorbents. The antioxidant compounds in the extracts of different parts of the plants could be used as reducing agents for the synthesis of zero-valent metal nanoparticles. Moreover, they can be applied to the surface of nanoparticles, which enhances the stability of synthesized nanoparticles. In addition to plant-derived compounds, microorganisms can play a significant role in synthesizing green nanoparticles.</p><h3>Summary</h3><p>For decades, human health and the environment have been threatened by exposure to heavy metals caused by the activities of mines, industries, and factories. Therefore, there is a need to provide solutions to remove these pollutants from the environment. One of the effective solutions is the adsorption method. The efficiency of this method is strongly influenced by the selection of suitable adsorbents. In recent years, special attention has been paid to nano-adsorbents. Utilizing green nano-adsorbents, as opposed to conventional materials, is a critical strategy for reducing environmental pollutants, particularly for heavy metal adsorption from contaminated water and wastewater. This paper also discusses the sources and occurrence of heavy metals, as well as a number of environmental issues of methods that employ green and eco-friendly nano-adsorbents for heavy metals removal, including (i) the type of heavy metals and their use pattern, (ii) influencing factors, (iii) heavy metal analysis methods and their potential toxicity, and (iv) different conventional and cutting-edge nanotechnologies for water and wastewater treatment. The literature review, which covered the years 2002–2023, provided a critical illustration of current concerns about heavy metal contamination and removal efforts, with a focus on green nano-adsorbents and the use of these environmentally friendly materials.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 1","pages":"1 - 39"},"PeriodicalIF":6.4,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139903738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Aamer Mehmood, Mahwish Amin, Muhammad Nabeel Haider, Sana Malik, Hafiza Aroosa Malik, Md. Asraful Alam, Jingliang Xu, Abdulrahman H. Alessa, Aqib Zafar Khan, Raj Boopathy
{"title":"Wastewater-Grown Algal Biomass as Carbon-neutral, Renewable, and Low Water Footprint Feedstock for Clean Energy and Bioplastics","authors":"Muhammad Aamer Mehmood, Mahwish Amin, Muhammad Nabeel Haider, Sana Malik, Hafiza Aroosa Malik, Md. Asraful Alam, Jingliang Xu, Abdulrahman H. Alessa, Aqib Zafar Khan, Raj Boopathy","doi":"10.1007/s40726-024-00294-x","DOIUrl":"10.1007/s40726-024-00294-x","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Growing algae in wastewater offers carbon-neutral biomass production and pollutant removal. However, practical applications of wastewater-grown algal biomass have social acceptability issues in the food and feed industries due to unexpected threats (such as human/animal pathogens and toxins) associated with the wastewater-grown biomass. Therefore, considering the substantial pollutant removal potential of microalgae and the abundance of wastewater as a growth media, alternative bioprocessing routes of the wastewater-grown biomass should be developed. This review highlights some non-food and non-feed applications of wastewater-grown algae biomass.</p><h3>Recent Findings</h3><p>Wastewater-grown algal biomass contains high amounts of carbohydrates, proteins, and lipids depending upon the composition of wastewater and algal species grown. These three significant metabolites are precursors to bioenergy and biomaterial products such as bioethanol, biogas, and bioplastics. Hydrolysis of the wastewater-grown algal biomass can be easily improved to enhance the microbial fermentation yields to produce bioethanol and biobutanol. Fresh algal biomass, residual biomass, or both can be used as feedstocks in anaerobic digestion/co-digestion to produce biogas. Depending upon the selected species, wastewater-grown algal biomass can also produce biopolymers whose productivity depends on growth conditions, wastewater composition, and biopolymer synthesis method. Enzymatic, eco-friendly chemicals and mechanical approaches used to prepare biopolymers from algal biomass should be optimized for higher yields of biopolymers.</p><h3>Summary</h3><p>Although wastewater-grown biomass has acceptability issues, it offers certain environmental benefits, including atmospheric carbon capture, phycoremediation of pollutants, and water recycling. This manuscript highlights the recent progress and emerging trends of wastewater-grown algal biomass as a feedstock with potential applications for fermentation, anaerobic digestion, and bioprocessing to produce clean energy and bioplastics.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"10 2","pages":"172 - 188"},"PeriodicalIF":6.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}