Towards Environmental Sustainability: Employing Adaptive Laboratory Evolution to Develop Elite Algae Strains for Industrial and Environmental Applications

IF 6.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mahwish Amin, Fatima Tahir, Iqra Akbar, Abdulrahman H. Alessa, Ahmad A. Alsaigh, Chen-Guang Liu, Fengxue Xin, Zhanyou Chi, Achmad Syafiuddin, Muhammad Aamer Mehmood, Raj Boopathy
{"title":"Towards Environmental Sustainability: Employing Adaptive Laboratory Evolution to Develop Elite Algae Strains for Industrial and Environmental Applications","authors":"Mahwish Amin,&nbsp;Fatima Tahir,&nbsp;Iqra Akbar,&nbsp;Abdulrahman H. Alessa,&nbsp;Ahmad A. Alsaigh,&nbsp;Chen-Guang Liu,&nbsp;Fengxue Xin,&nbsp;Zhanyou Chi,&nbsp;Achmad Syafiuddin,&nbsp;Muhammad Aamer Mehmood,&nbsp;Raj Boopathy","doi":"10.1007/s40726-025-00346-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Algae hold immense potential for industrial and environmental applications for their efficient carbon fixation and producing a range of valuable metabolites. However, their commercial cultivation is still challenging because of compromised productivities under various environmental stress conditions. Therefore, elite strains capable of commercial production should be developed. Although, significant progress has been made in metabolic pathway engineering techniques, due to the complexity of metabolic and regulatory networks of algae, rational bioengineering remained inefficient for strain improvement. This review has assessed the role of Adaptive Laboratory Evolution (ALE) as a promising and cost-effective alternative approach in developing elite algae strains for improved carbon capture, enhanced biomass production, and improved metabolite productivities to meet the robust commercial needs.</p><h3>Recent Findings</h3><p>ALE involves selecting the mutant cells under controlled selection pressure, where cells are exposed to a sequentially rising set of stress conditions over multiple generations to finally adapt and evolve desired phenotypes. It leads to the activation of inactive pathways that are suitable for the survival of strain in stress conditions. A brief view of ALE-assisted cultivation techniques shows its specificity for specific goal to develop its product-oriented applications. Furthermore, involving biosensor and robotics in ALE technology has indicated the potential of ALE process as a robust technique to rapidly develop elite strains to meet rising environmental and industrial demands. </p><h3>Summary</h3><p>Assessment of ALE-assisted strain improvement has shown its potential to improve algae strains for the overproduction of desired products without using rational engineering methods. Besides, automation of ALE technology could be even a better strategy to make the evolution process of desired phenotype and product development process selective and time efficient. However, unavailability of selection pressure for some valuable phenotypes limits the widespread application of ALE for some phenotypes. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00346-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of Review

Algae hold immense potential for industrial and environmental applications for their efficient carbon fixation and producing a range of valuable metabolites. However, their commercial cultivation is still challenging because of compromised productivities under various environmental stress conditions. Therefore, elite strains capable of commercial production should be developed. Although, significant progress has been made in metabolic pathway engineering techniques, due to the complexity of metabolic and regulatory networks of algae, rational bioengineering remained inefficient for strain improvement. This review has assessed the role of Adaptive Laboratory Evolution (ALE) as a promising and cost-effective alternative approach in developing elite algae strains for improved carbon capture, enhanced biomass production, and improved metabolite productivities to meet the robust commercial needs.

Recent Findings

ALE involves selecting the mutant cells under controlled selection pressure, where cells are exposed to a sequentially rising set of stress conditions over multiple generations to finally adapt and evolve desired phenotypes. It leads to the activation of inactive pathways that are suitable for the survival of strain in stress conditions. A brief view of ALE-assisted cultivation techniques shows its specificity for specific goal to develop its product-oriented applications. Furthermore, involving biosensor and robotics in ALE technology has indicated the potential of ALE process as a robust technique to rapidly develop elite strains to meet rising environmental and industrial demands. 

Summary

Assessment of ALE-assisted strain improvement has shown its potential to improve algae strains for the overproduction of desired products without using rational engineering methods. Besides, automation of ALE technology could be even a better strategy to make the evolution process of desired phenotype and product development process selective and time efficient. However, unavailability of selection pressure for some valuable phenotypes limits the widespread application of ALE for some phenotypes. 

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信