Emissions of Biogenic Volatile Organic Compounds from Plants: Impacts of Air Pollutants and Environmental Variables

IF 6.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yan Yang, Fengbin Sun, Chen Hu, Jingsi Gao, Weimin Wang, Qianjie Chen, Jianhuai Ye
{"title":"Emissions of Biogenic Volatile Organic Compounds from Plants: Impacts of Air Pollutants and Environmental Variables","authors":"Yan Yang,&nbsp;Fengbin Sun,&nbsp;Chen Hu,&nbsp;Jingsi Gao,&nbsp;Weimin Wang,&nbsp;Qianjie Chen,&nbsp;Jianhuai Ye","doi":"10.1007/s40726-024-00339-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Biogenic volatile organic compounds (BVOCs) are essential for ecosystem functioning and climate. In natural environments, plants are exposed to a complex mixture of pollutants and environmental stressors, and combined exposure to these factors can produce effects that differ significantly from those of individual influences. However, comprehensive reviews on BVOC emission resulting from exposure to air pollution and its interactions with environmental variables remain limited.</p><h3>Recent Findings</h3><p>Rapid industrialization has exacerbated air pollution, characterized by increased levels of ozone (O<sub>3</sub>) and carbon dioxide (CO<sub>2</sub>) in the atmosphere, along with extreme climatic events such as heat waves and droughts. These stresses induced by air pollution and environmental factors may trigger plant defense mechanisms, leading to adjustments in metabolism and respiration or may damage plant cells, ultimately affecting the composition and intensity of BVOC emissions.</p><h3>Summary</h3><p>This review highlights that O<sub>3</sub> generally stimulates BVOC emissions, with a relatively smaller effect on isoprene but notable sensitivity in sesquiterpenes. In contrast, elevated CO<sub>2</sub> levels can suppress emissions across the three BVOC types investigated. Warming significantly boosts emissions, while drought has little effect on isoprene but substantially enhances sesquiterpene emissions. These analyses are limited by substantial uncertainties due to data scarcity. Additionally, the combined effects of air pollutants and environmental variables vary by plant species, VOC types, and stressor intensities. This review also summarizes current methodologies for investigating BVOC emissions, explores plant-pollutant-stressor interactions, identifies research gaps, and offers insights for advancing the understanding of stress-induced BVOC emissions in a changing environment and climate. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-024-00339-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of Review

Biogenic volatile organic compounds (BVOCs) are essential for ecosystem functioning and climate. In natural environments, plants are exposed to a complex mixture of pollutants and environmental stressors, and combined exposure to these factors can produce effects that differ significantly from those of individual influences. However, comprehensive reviews on BVOC emission resulting from exposure to air pollution and its interactions with environmental variables remain limited.

Recent Findings

Rapid industrialization has exacerbated air pollution, characterized by increased levels of ozone (O3) and carbon dioxide (CO2) in the atmosphere, along with extreme climatic events such as heat waves and droughts. These stresses induced by air pollution and environmental factors may trigger plant defense mechanisms, leading to adjustments in metabolism and respiration or may damage plant cells, ultimately affecting the composition and intensity of BVOC emissions.

Summary

This review highlights that O3 generally stimulates BVOC emissions, with a relatively smaller effect on isoprene but notable sensitivity in sesquiterpenes. In contrast, elevated CO2 levels can suppress emissions across the three BVOC types investigated. Warming significantly boosts emissions, while drought has little effect on isoprene but substantially enhances sesquiterpene emissions. These analyses are limited by substantial uncertainties due to data scarcity. Additionally, the combined effects of air pollutants and environmental variables vary by plant species, VOC types, and stressor intensities. This review also summarizes current methodologies for investigating BVOC emissions, explores plant-pollutant-stressor interactions, identifies research gaps, and offers insights for advancing the understanding of stress-induced BVOC emissions in a changing environment and climate. 

Graphical Abstract

植物生物源性挥发性有机化合物的排放:空气污染物和环境变量的影响
生物源性挥发性有机化合物(BVOCs)对生态系统功能和气候至关重要。在自然环境中,植物暴露于污染物和环境压力的复杂混合物中,这些因素的综合暴露可能产生与单个影响显著不同的影响。然而,对接触空气污染导致的双挥发性有机化合物排放及其与环境变量的相互作用的全面审查仍然有限。快速工业化加剧了空气污染,其特征是大气中臭氧(O3)和二氧化碳(CO2)水平的增加,以及热浪和干旱等极端气候事件。这些由空气污染和环境因素引起的胁迫可能触发植物的防御机制,导致代谢和呼吸的调整或可能损害植物细胞,最终影响BVOC排放的成分和强度。本综述强调,臭氧通常会刺激BVOC的排放,对异戊二烯的影响相对较小,但对倍半萜的敏感性显著。相比之下,二氧化碳浓度升高可以抑制所调查的三种BVOC类型的排放。变暖显著增加了排放,而干旱对异戊二烯影响不大,但大大增加了倍半萜的排放。由于数据缺乏,这些分析受到大量不确定性的限制。此外,空气污染物和环境变量的综合影响因植物种类、挥发性有机化合物类型和压力源强度而异。本综述还总结了目前研究BVOC排放的方法,探讨了植物-污染物-应激源的相互作用,确定了研究空白,并为推进对环境和气候变化中应激诱导的BVOC排放的理解提供了见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信