迈向环境可持续性:采用适应性实验室进化开发用于工业和环境应用的精英藻类菌株

IF 6.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mahwish Amin, Fatima Tahir, Iqra Akbar, Abdulrahman H. Alessa, Ahmad A. Alsaigh, Chen-Guang Liu, Fengxue Xin, Zhanyou Chi, Achmad Syafiuddin, Muhammad Aamer Mehmood, Raj Boopathy
{"title":"迈向环境可持续性:采用适应性实验室进化开发用于工业和环境应用的精英藻类菌株","authors":"Mahwish Amin,&nbsp;Fatima Tahir,&nbsp;Iqra Akbar,&nbsp;Abdulrahman H. Alessa,&nbsp;Ahmad A. Alsaigh,&nbsp;Chen-Guang Liu,&nbsp;Fengxue Xin,&nbsp;Zhanyou Chi,&nbsp;Achmad Syafiuddin,&nbsp;Muhammad Aamer Mehmood,&nbsp;Raj Boopathy","doi":"10.1007/s40726-025-00346-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Algae hold immense potential for industrial and environmental applications for their efficient carbon fixation and producing a range of valuable metabolites. However, their commercial cultivation is still challenging because of compromised productivities under various environmental stress conditions. Therefore, elite strains capable of commercial production should be developed. Although, significant progress has been made in metabolic pathway engineering techniques, due to the complexity of metabolic and regulatory networks of algae, rational bioengineering remained inefficient for strain improvement. This review has assessed the role of Adaptive Laboratory Evolution (ALE) as a promising and cost-effective alternative approach in developing elite algae strains for improved carbon capture, enhanced biomass production, and improved metabolite productivities to meet the robust commercial needs.</p><h3>Recent Findings</h3><p>ALE involves selecting the mutant cells under controlled selection pressure, where cells are exposed to a sequentially rising set of stress conditions over multiple generations to finally adapt and evolve desired phenotypes. It leads to the activation of inactive pathways that are suitable for the survival of strain in stress conditions. A brief view of ALE-assisted cultivation techniques shows its specificity for specific goal to develop its product-oriented applications. Furthermore, involving biosensor and robotics in ALE technology has indicated the potential of ALE process as a robust technique to rapidly develop elite strains to meet rising environmental and industrial demands. </p><h3>Summary</h3><p>Assessment of ALE-assisted strain improvement has shown its potential to improve algae strains for the overproduction of desired products without using rational engineering methods. Besides, automation of ALE technology could be even a better strategy to make the evolution process of desired phenotype and product development process selective and time efficient. However, unavailability of selection pressure for some valuable phenotypes limits the widespread application of ALE for some phenotypes. </p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Environmental Sustainability: Employing Adaptive Laboratory Evolution to Develop Elite Algae Strains for Industrial and Environmental Applications\",\"authors\":\"Mahwish Amin,&nbsp;Fatima Tahir,&nbsp;Iqra Akbar,&nbsp;Abdulrahman H. Alessa,&nbsp;Ahmad A. Alsaigh,&nbsp;Chen-Guang Liu,&nbsp;Fengxue Xin,&nbsp;Zhanyou Chi,&nbsp;Achmad Syafiuddin,&nbsp;Muhammad Aamer Mehmood,&nbsp;Raj Boopathy\",\"doi\":\"10.1007/s40726-025-00346-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>Algae hold immense potential for industrial and environmental applications for their efficient carbon fixation and producing a range of valuable metabolites. However, their commercial cultivation is still challenging because of compromised productivities under various environmental stress conditions. Therefore, elite strains capable of commercial production should be developed. Although, significant progress has been made in metabolic pathway engineering techniques, due to the complexity of metabolic and regulatory networks of algae, rational bioengineering remained inefficient for strain improvement. This review has assessed the role of Adaptive Laboratory Evolution (ALE) as a promising and cost-effective alternative approach in developing elite algae strains for improved carbon capture, enhanced biomass production, and improved metabolite productivities to meet the robust commercial needs.</p><h3>Recent Findings</h3><p>ALE involves selecting the mutant cells under controlled selection pressure, where cells are exposed to a sequentially rising set of stress conditions over multiple generations to finally adapt and evolve desired phenotypes. It leads to the activation of inactive pathways that are suitable for the survival of strain in stress conditions. A brief view of ALE-assisted cultivation techniques shows its specificity for specific goal to develop its product-oriented applications. Furthermore, involving biosensor and robotics in ALE technology has indicated the potential of ALE process as a robust technique to rapidly develop elite strains to meet rising environmental and industrial demands. </p><h3>Summary</h3><p>Assessment of ALE-assisted strain improvement has shown its potential to improve algae strains for the overproduction of desired products without using rational engineering methods. Besides, automation of ALE technology could be even a better strategy to make the evolution process of desired phenotype and product development process selective and time efficient. However, unavailability of selection pressure for some valuable phenotypes limits the widespread application of ALE for some phenotypes. </p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00346-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00346-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物具有高效的固碳和产生一系列有价值的代谢物,在工业和环境应用方面具有巨大的潜力。然而,由于在各种环境胁迫条件下的生产力受损,它们的商业化种植仍然具有挑战性。因此,应该开发能够商业化生产的优良菌株。尽管代谢途径工程技术取得了重大进展,但由于藻类代谢和调控网络的复杂性,合理的生物工程对于菌株改良仍然效率低下。本综述评估了适应性实验室进化(ALE)作为一种有前途且具有成本效益的替代方法,在开发优质藻类菌株方面的作用,以改善碳捕获,增强生物质生产,提高代谢物生产率,以满足强劲的商业需求。最近的发现包括在可控的选择压力下选择突变细胞,其中细胞在多代中暴露于一系列连续上升的压力条件下,最终适应并进化出所需的表型。它导致激活不活跃的途径,这些途径适合于应变在应力条件下的生存。对ale辅助栽培技术的简要介绍表明其针对特定目标开发其面向产品的应用的特殊性。此外,在ALE技术中涉及生物传感器和机器人技术表明,ALE工艺作为一种强大的技术,具有快速开发优良菌株以满足日益增长的环境和工业需求的潜力。ale辅助菌株改良的评估表明,在不使用合理的工程方法的情况下,它有可能改善所需产品的过量生产的藻类菌株。此外,ALE技术的自动化甚至可能是一个更好的策略,使所需表型的进化过程和产品开发过程具有选择性和时间效率。然而,一些有价值的表型缺乏选择压力,限制了ALE对某些表型的广泛应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Environmental Sustainability: Employing Adaptive Laboratory Evolution to Develop Elite Algae Strains for Industrial and Environmental Applications

Purpose of Review

Algae hold immense potential for industrial and environmental applications for their efficient carbon fixation and producing a range of valuable metabolites. However, their commercial cultivation is still challenging because of compromised productivities under various environmental stress conditions. Therefore, elite strains capable of commercial production should be developed. Although, significant progress has been made in metabolic pathway engineering techniques, due to the complexity of metabolic and regulatory networks of algae, rational bioengineering remained inefficient for strain improvement. This review has assessed the role of Adaptive Laboratory Evolution (ALE) as a promising and cost-effective alternative approach in developing elite algae strains for improved carbon capture, enhanced biomass production, and improved metabolite productivities to meet the robust commercial needs.

Recent Findings

ALE involves selecting the mutant cells under controlled selection pressure, where cells are exposed to a sequentially rising set of stress conditions over multiple generations to finally adapt and evolve desired phenotypes. It leads to the activation of inactive pathways that are suitable for the survival of strain in stress conditions. A brief view of ALE-assisted cultivation techniques shows its specificity for specific goal to develop its product-oriented applications. Furthermore, involving biosensor and robotics in ALE technology has indicated the potential of ALE process as a robust technique to rapidly develop elite strains to meet rising environmental and industrial demands. 

Summary

Assessment of ALE-assisted strain improvement has shown its potential to improve algae strains for the overproduction of desired products without using rational engineering methods. Besides, automation of ALE technology could be even a better strategy to make the evolution process of desired phenotype and product development process selective and time efficient. However, unavailability of selection pressure for some valuable phenotypes limits the widespread application of ALE for some phenotypes. 

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信