Towards Next-Generation Membrane Bioreactors: Innovations, Challenges, and Future Directions

IF 6.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
K. Khoiruddin, R. Boopathy, S. Kawi, I. G. Wenten
{"title":"Towards Next-Generation Membrane Bioreactors: Innovations, Challenges, and Future Directions","authors":"K. Khoiruddin,&nbsp;R. Boopathy,&nbsp;S. Kawi,&nbsp;I. G. Wenten","doi":"10.1007/s40726-025-00345-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review provides a comprehensive analysis of the current state and future prospects of membrane bioreactors (MBRs), focusing on recent advancements in membrane materials, innovative design concepts, and strategies to optimize biodegradation processes. Additionally, it highlights the transformative role of artificial intelligence (AI), machine learning (ML), and hybrid configurations in advancing MBR.</p><h3>Recent Findings</h3><p> Hybrid MBR systems that incorporate advanced oxidation processes (AOPs) and other processes demonstrate enhanced micropollutant removal and treatment efficiency. MBR with nanocomposite and bio-inspired membranes exhibit improved fouling resistance, water flux, and mechanical strength. Significant innovations also include the application of AI-driven models, such as random forests and neural networks, to predict fouling behavior and optimize operational parameters in MBRs.</p><h3>Summary</h3><p>Recent progress in MBR technology, especially through new membrane materials and hybrid systems, plays an important role in improving MBR performance for contaminant removal and reducing fouling in wastewater treatment. Additionally, incorporating AI and optimizing operational parameters can further improve the efficiency, effectiveness, and reliability of these systems. </p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00345-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of Review

This review provides a comprehensive analysis of the current state and future prospects of membrane bioreactors (MBRs), focusing on recent advancements in membrane materials, innovative design concepts, and strategies to optimize biodegradation processes. Additionally, it highlights the transformative role of artificial intelligence (AI), machine learning (ML), and hybrid configurations in advancing MBR.

Recent Findings

Hybrid MBR systems that incorporate advanced oxidation processes (AOPs) and other processes demonstrate enhanced micropollutant removal and treatment efficiency. MBR with nanocomposite and bio-inspired membranes exhibit improved fouling resistance, water flux, and mechanical strength. Significant innovations also include the application of AI-driven models, such as random forests and neural networks, to predict fouling behavior and optimize operational parameters in MBRs.

Summary

Recent progress in MBR technology, especially through new membrane materials and hybrid systems, plays an important role in improving MBR performance for contaminant removal and reducing fouling in wastewater treatment. Additionally, incorporating AI and optimizing operational parameters can further improve the efficiency, effectiveness, and reliability of these systems.

迈向下一代膜生物反应器:创新、挑战和未来方向
本文综述了膜生物反应器(mbr)的现状和未来发展,重点介绍了膜材料、创新设计理念和优化生物降解过程的策略方面的最新进展。此外,它还强调了人工智能(AI)、机器学习(ML)和混合配置在推进MBR中的变革性作用。结合高级氧化过程(AOPs)和其他过程的混合MBR系统显示出增强的微污染物去除和处理效率。纳米复合膜和仿生膜的MBR具有更好的抗污性、水通量和机械强度。重要的创新还包括应用人工智能驱动的模型,如随机森林和神经网络,来预测mbr的结垢行为并优化操作参数。近年来MBR技术的发展,特别是新型膜材料和混合系统的应用,对提高MBR去除污染物和减少废水污染的性能起着重要的作用。此外,结合人工智能和优化操作参数可以进一步提高这些系统的效率、有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信