Current Pollution Reports最新文献

筛选
英文 中文
Conductive Materials Enhance Performance of Anaerobic Membrane Bioreactor in Treating Liquid Waste from Animal Farming: a Review 导电材料提高厌氧膜生物反应器处理动物养殖废液性能的研究进展
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-04 DOI: 10.1007/s40726-025-00371-9
Weiting Guan, Yongzhen Peng, Xueqi Chen, Xiaoye Song
{"title":"Conductive Materials Enhance Performance of Anaerobic Membrane Bioreactor in Treating Liquid Waste from Animal Farming: a Review","authors":"Weiting Guan,&nbsp;Yongzhen Peng,&nbsp;Xueqi Chen,&nbsp;Xiaoye Song","doi":"10.1007/s40726-025-00371-9","DOIUrl":"10.1007/s40726-025-00371-9","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Anaerobic membrane bioreactor (AnMBR) holds considerable promise for the recovery and reutilization of resources from animal farming liquid waste (AFLW). However, typical pollutants in AFLW can markedly impair AnMBR performance. This review aims to describe the mechanisms through which conductive materials enhance AnMBR performance to maximize resource recovery and minimize environmental impact.</p><h3>Recent Findings</h3><p>AFLW exhibits high resource utilization potential. However, pollutants in AFLW, such as antibiotics, resistance genes, and heavy metals (HMs), can disrupt microbial communities in AnMBR, reducing treatment efficiency and increasing environmental risks. Conductive materials, such as iron-based materials (e.g., zero-valent iron, magnetite) and carbon-based materials (e.g., biochar, granular activated carbon), enhance microbial activity through mediated interspecies electron transfer and direct interspecific electron transfer, improving pollutant removal and resource recovery. Additionally, conductive materials reduce the bio-toxicity of HMs through adsorption, further mitigating environmental pollution.</p><h3>Summary</h3><p>This review highlights the enhancement of resource recovery and reduction of environmental risks in AnMBR for treating AFLW through the incorporation of conductive materials. The incorporation of conductive materials has been shown to significantly improve AnMBR performance, including enhanced methane production, reduced start-up time, and improved degradation efficiency of organic matter. The main mechanisms of conductive materials are further discussed to provide the further development of AnMBR in AFLW treatment.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae in Dual Role: An Effective Platform for Biological Carbon Capturing and High-Value Carotenoid Production 微藻的双重作用:生物碳捕获和高价值类胡萝卜素生产的有效平台
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-04 DOI: 10.1007/s40726-025-00362-w
Anil Kumar Patel
{"title":"Microalgae in Dual Role: An Effective Platform for Biological Carbon Capturing and High-Value Carotenoid Production","authors":"Anil Kumar Patel","doi":"10.1007/s40726-025-00362-w","DOIUrl":"10.1007/s40726-025-00362-w","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review examines recent advances in exploring the potential of microalgae for simultaneous CO<sub>2</sub> sequestration and the sustainable biosynthesis of high-value carotenoids, specifically astaxanthin and lutein. It aims to highlight integrated approaches that align microalgal biotechnology with global sustainability targets.</p><h3>Recent Findings</h3><p>Drawing on a detailed analysis of recent experimental and technological studies, this review explores innovations in photobioreactor engineering, nutrient regime optimization, genetic and metabolic engineering, and the use of industrial flue gases to enhance CO<sub>2</sub> uptake by microalgae. The review also examines how carotenoid production is tightly linked to the microalgal life cycle: lutein is predominantly synthesized during active growth to support photosynthesis, while astaxanthin accumulates under stress conditions for cellular protection. Recent advancements in cultivation strategies and green extraction technologies have enhanced the yield and purity of these carotenoids, enabling broader industrial applications across nutraceuticals, pharmaceuticals, cosmetics, and aquaculture.</p><h3>Summary</h3><p>By analyzing multidisciplinary and biorefinery developments, this review demonstrates that carbon capturing with carotenoid biosynthesis integration in microalgae systems supports Sustainable Development Goals (SDGs) 13 (Climate Action) and 12 (Responsible Consumption and Production). The dual focus on environmental remediation and bioactive production underlines microalgae’s potential as scalable, sustainable platforms in the emerging bioeconomy.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Organic and Biochar Amendments on Enhanced Bioremediation of Soils Contaminated with Persistent Organic Pollutants (POPs) 有机和生物炭改良剂对持久性有机污染物污染土壤的生物修复作用
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-04 DOI: 10.1007/s40726-025-00361-x
Shailja Sharma, Shiv Bolan, Santanu Mukherjee, Gianniantonio Petruzzelli, Francesca Pedron, Elisabetta Franchi, Wasana Fonseka, Hasintha Wijesekara, Liuwei Wang, Deyi Hou, Kadambot H. M. Siddique, Nanthi Bolan
{"title":"Role of Organic and Biochar Amendments on Enhanced Bioremediation of Soils Contaminated with Persistent Organic Pollutants (POPs)","authors":"Shailja Sharma,&nbsp;Shiv Bolan,&nbsp;Santanu Mukherjee,&nbsp;Gianniantonio Petruzzelli,&nbsp;Francesca Pedron,&nbsp;Elisabetta Franchi,&nbsp;Wasana Fonseka,&nbsp;Hasintha Wijesekara,&nbsp;Liuwei Wang,&nbsp;Deyi Hou,&nbsp;Kadambot H. M. Siddique,&nbsp;Nanthi Bolan","doi":"10.1007/s40726-025-00361-x","DOIUrl":"10.1007/s40726-025-00361-x","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review provides a comprehensive understanding about the mechanisms and technologies for the enhanced remediation of persistent organic pollutants (POPs)<b>-</b>contaminated soils by organic and biochar amendments. This article discusses the practical implications in relation to degradation, mobility, and bioavailability of POPs in soils.</p><h3>Recent Findings</h3><p>The application of organic (and carbonaceous) amendment lead to changes in soil’s pH, OM, and soluble organic carbon levels which might shift POPs from solid to aqueous phases, increasing their availability for microbial breakdown. Biochar can be useful as an electron donor, acceptor, or shuttle for microorganisms that degrade POPs (via different biological or chemical reactions) apart from its high surface area and excellent sorption properties (π–π interactions).</p><h3>Summary</h3><p>Large amounts of organic such as composted manure, biosolids, municipal solid waste, and biochar amendments are utilized as a soil conditioner to enhance soil health and crop productivity as well as a source of carbon and nutrients, which can also impact the interactions of POPs in soil.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-025-00361-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Paradox of Microplastic Removal in WWTP: Redistribution of Micropollutants in the Environment 污水处理厂微塑料去除的悖论:微污染物在环境中的再分配
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-03 DOI: 10.1007/s40726-025-00370-w
Agata Zdarta, Guoqiang Li
{"title":"The Paradox of Microplastic Removal in WWTP: Redistribution of Micropollutants in the Environment","authors":"Agata Zdarta,&nbsp;Guoqiang Li","doi":"10.1007/s40726-025-00370-w","DOIUrl":"10.1007/s40726-025-00370-w","url":null,"abstract":"<div><h3>Purpose of the Review</h3><p>High amounts of microplastics (MPs) are collected and then disposed of in sewage treatment plants. This review aims to identify the effects of wastewater treatment processes on the physical and chemical properties of MPs as well as their fragmentation and ageing, which are rarely reported and have not yet been revised.</p><h3>Recent Findings</h3><p>The amount of microplastic particles introduced into the WWTP depends on many factors, such as the area and population, treatment processes, migration of people, and weather conditions. As a result, WWTP effluents were identified as the source of MP pollution. Selected treatment methods and chemicals used in wastewater treatment may contribute to the deterioration of MP.</p><h3>Summary</h3><p>The impact of individual physical, mechanical, and chemical factors on the fate of microplastics in the WWTP was analysed. In the case of preliminary and primary treatment processes, the fragmentation of MP particles is mainly affected by mechanical interactions such as physical abrasion and water shearing force. However, during tertiary treatment processes, chemical factors such as advanced oxidation processes, chlorination, and ozonation play a leading role in MP deterioration. The paradox of so-called microplastic removal in WWTPs has been highlighted, and the concept of defining wastewater treatment plants as sources of tertiary microplastic pollution has been proposed.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-025-00370-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric Amines: Advances in Analytical Techniques, Emission Inventories, Regional Pollution, and Roles in New Particle Formation 大气胺:分析技术进展,排放清单,区域污染,以及在新粒子形成中的作用
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-03 DOI: 10.1007/s40726-025-00364-8
Qi Yu, Nan Fu, Jiajia Lu, Yukai Zhang, Wei Du, Junfeng Wang
{"title":"Atmospheric Amines: Advances in Analytical Techniques, Emission Inventories, Regional Pollution, and Roles in New Particle Formation","authors":"Qi Yu,&nbsp;Nan Fu,&nbsp;Jiajia Lu,&nbsp;Yukai Zhang,&nbsp;Wei Du,&nbsp;Junfeng Wang","doi":"10.1007/s40726-025-00364-8","DOIUrl":"10.1007/s40726-025-00364-8","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Amines, as atmospheric pollutants, significantly impact air quality, climate change, and human health because they readily react with acidic gases in the atmosphere to form secondary organic aerosols (SOA) and participate in the formation of fine particulate matter (PM<sub>2.5</sub>). This review summarizes the research progress on atmospheric amine, including analytical methods, emission inventory, and regional pollution, as well as their significance in the course of new particle formation (NPF).</p><h3>Recent Findings</h3><p>At present, the detection methods for amines mainly include chromatography and mass spectrometry, among which the development of online measurement technology helps to improve time resolution and research depth. The severe lack of field-measured emission factors has hindered the model’s simulation of amine effects. The concentration and main components of particulate amines show significant differences in different regions and seasons. The sulfuric acid (H<sub>2</sub>SO<sub>4</sub>)-H<sub>2</sub>O-amine ternary nucleation theory is widely recognized, but field measurements have also revealed the influence of other organic compounds. In general, amines have a critical impact on atmospheric chemical reactions, particularly their support in the generation of new particles and SOA, which makes them a vital factor in climate transform research.</p><h3>Summary</h3><p>This review not only provides the latest research findings on amines but also points out the deficiencies in current studies. It emphasizes the need for systematic research on the emissions, the mechanisms of NPF. The ultimate goal is to contribute to mitigating atmospheric pollution and protecting public health.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations 天然接收系统中溶解有机物对消毒副产物形成潜力和毒性的影响:从起源、化学性质和转化的见解
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-06-02 DOI: 10.1007/s40726-025-00350-0
Wei-Yu Li, Yun Chen, Wen-Long Wang, Yan-Lin Chen, Qian-Yuan Wu
{"title":"The Impact of Dissolved Organic Matter in Natural Receiving Systems on the Formation Potential and Toxicity of Disinfection By-products: Insights from Origins, Chemical Properties, and Transformations","authors":"Wei-Yu Li,&nbsp;Yun Chen,&nbsp;Wen-Long Wang,&nbsp;Yan-Lin Chen,&nbsp;Qian-Yuan Wu","doi":"10.1007/s40726-025-00350-0","DOIUrl":"10.1007/s40726-025-00350-0","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This study aims to examine the role of dissolved organic matter (DOM) as a key precursor to disinfection by-products (DBPs) in aquatic environments. Key objectives include elucidating how DOM sources, chemical properties, and environmental transformations influence DBP speciation and toxicity. The study also evaluates strategies for mitigating DBP risks in drinking water treatment and identifies critical knowledge gaps in linking DOM dynamics to DBP toxicity profiles.</p><h3>Recent Findings</h3><p>Recent studies highlight that the sources of DOM and its chemical characteristics, including SUVA<sub>254</sub> and humification index (HIX), strongly influence disinfection by-product formation potential (DBPFP). Photochemical and microbial transformations significantly alter the reactivity of DOM, with photodegradation typically reducing DBPFP while biodegradation increasing it. Despite these findings, the relationship between DOM transformations and DBP toxicity remains underexplored. Advanced mass spectrometry and fluorescence-based techniques have improved the ability to characterize DOM, offering new insights into the molecular-level dynamics of DBP formation. While traditional water treatment methods remain essential, enhanced coagulation, adsorption, and advanced oxidation processes are increasingly necessary to efficiently remove DOM and mitigate DBP formation.</p><h3>Summary</h3><p>This review provides a comprehensive examination of the DOM-DBP relationship, offering insights into the speciation and toxicity of DBP. It is highlighted that the sources, chemical properties, and natural transformations of DOM complicate the DBP precursor pool, affecting DOM reactivity and DBP production during disinfection. Advances in analytical techniques could improve our understanding of molecular-level interactions between DOM and DBP. Future research should prioritize comprehensive DOM characterization and predictive models to link DOM subfractions with toxicity explicitly. Furthermore, enhanced removal strategies must be developed to balance disinfection efficacy with minimized health and ecological risks, thereby ensuring water quality safety.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145142146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Pollutant Removal Performance of Bacteria and Microalgae Through Random Mutagenesis Technology: A Comprehensive Review of Effect and Mechanism 通过随机诱变技术提高细菌和微藻的污染物去除性能:效果和机制综述
IF 8.1 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-05-31 DOI: 10.1007/s40726-025-00366-6
Zeyuan Wang, Yu Hong
{"title":"Enhancing the Pollutant Removal Performance of Bacteria and Microalgae Through Random Mutagenesis Technology: A Comprehensive Review of Effect and Mechanism","authors":"Zeyuan Wang,&nbsp;Yu Hong","doi":"10.1007/s40726-025-00366-6","DOIUrl":"10.1007/s40726-025-00366-6","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review intends to comprehensively introduce random mutagenesis technology and summarize the up-to-date advances for utilizing it to enhance the pollutant removal abilities of bacteria, microalgae, and microalgae-bacteria consortia. In addition, this review also proposes future improvement strategies to further enhance the strengthening effect of random mutagenesis technology.</p><h3>Recent Findings</h3><p>Environmental pollution caused by wastewater, residual antibiotics, and other pollutants has caused severe disservice to the ecosystem and the development of human society. Pure bacterial systems, pure microalgal systems, and microalgae-bacteria consortia have been extensively applied to treat pollutants because of their excellent treatment effects, low cost, and other preponderances. Nevertheless, the pollutant removal abilities of bacteria and microalgae are limited by the individual species characteristics and adverse environmental factors. Fortunately, random mutagenesis technology can effectively solve the above problems. At present, random mutagenesis technology has been proven to significantly improve the removal efficiency of bacteria and microalgae for pollutants such as nutrients, petroleum hydrocarbons, and CO<sub>2</sub>.</p><h3>Summary</h3><p>This review first systematically describes the overall research situation of random mutagenesis technology through the bibliometric tools and related literature. Then, the applications of random mutagenesis technology in enhancing the pollutant removal capacity of bacteria, microalgae, and microalgae-bacteria consortia are introduced, respectively. This review also innovatively summarizes the principles of enhancing the pollutant removal performance of microalgae and bacteria through random mutagenesis technology. The challenges this technology faces in the current research are analyzed in depth, and corresponding improvement methods are given.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145145681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review on the Impact of Black-Odorous Water Bodies on the Physiological Ecology of Vallisneria natans and Its Associated Microbial Community 黑臭水体对水蛭生理生态及相关微生物群落影响的综述
IF 6.4 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-05-16 DOI: 10.1007/s40726-025-00359-5
Fares Hamoud, Yazid Bedouh, Linda Saili, Fatma Zohra Mellouk, Sofiane Ali Rachedi, Ines Bekhouche
{"title":"A Comprehensive Review on the Impact of Black-Odorous Water Bodies on the Physiological Ecology of Vallisneria natans and Its Associated Microbial Community","authors":"Fares Hamoud,&nbsp;Yazid Bedouh,&nbsp;Linda Saili,&nbsp;Fatma Zohra Mellouk,&nbsp;Sofiane Ali Rachedi,&nbsp;Ines Bekhouche","doi":"10.1007/s40726-025-00359-5","DOIUrl":"10.1007/s40726-025-00359-5","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Black-odorous water bodies (BOWBs) pose significant environmental challenges, characterized by excessive nutrients, heavy metals, and organic pollutants that degrade aquatic ecosystems. This review examines the impact of BOWBs on the physiological ecology of <i>Vallisneria natans</i>, a submersed macrophyte known for its phytoremediation potential, and its associated biofilm microbial community.</p><h3>Recent Findings</h3><p><i>Vallisneria natans</i> interacts symbiotically with biofilm communities, which facilitate nutrient cycling, pollutant degradation, and enhance overall plant health. However, pollutants like heavy metals, microplastics, pharmaceuticals, and pesticides disrupt this symbiotic relationship, leading to oxidative stress, impaired nutrient uptake, and reduced growth. These effects limit the effectiveness of <i>V. natans</i> in natural restoration processes, highlighting the need for targeted remediation strategies.</p><h3>Summary</h3><p>Understanding the complex interactions between <i>V. natans</i> and its biofilm community under the stress of BOWBs is essential for developing effective, eco-friendly restoration strategies. This review identifies key knowledge gaps and proposes future research directions to optimize restoration efforts in degraded aquatic systems.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Data-Driven Analysis to Identify Research Hotspots and Trends in the Treatment of Algal Toxins in Water Environment
IF 6.4 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-05-13 DOI: 10.1007/s40726-025-00356-8
Zhao Xue, Lili Jin, Longhao Zhang, Junjie Lu, Naiyuan Zuo, Xiangzhou Sun, Hui Huang, Hongqiang Ren
{"title":"A Data-Driven Analysis to Identify Research Hotspots and Trends in the Treatment of Algal Toxins in Water Environment","authors":"Zhao Xue,&nbsp;Lili Jin,&nbsp;Longhao Zhang,&nbsp;Junjie Lu,&nbsp;Naiyuan Zuo,&nbsp;Xiangzhou Sun,&nbsp;Hui Huang,&nbsp;Hongqiang Ren","doi":"10.1007/s40726-025-00356-8","DOIUrl":"10.1007/s40726-025-00356-8","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Over the past 2 decades, due to eutrophication and other factors, algal toxins in water bodies have become increasingly prevalent, posing a significant threat to aquatic ecosystems and human health. The complex properties of algal toxins and the potential environmental risks they pose urgently demand comprehensive research and effective solutions. </p><h3>Recent Findings</h3><p>Currently, the methods to address this issue mainly cover physical, chemical, and biological means. Oxidation, photocatalysis, and adsorption have emerged as the primary techniques. However, each has its own advantages and disadvantages in terms of removal efficiency, cost, and environmental impact. Previous studies were mostly small-scale laboratory explorations and failed to analyze the overall research trends of algal toxins from a macroscopic perspective. This study, by employing bibliometrics and patent analysis methods, comprehensively examines the research status and development trends of treating algal toxins in water. </p><h3>Summary</h3><p>This study carried out a data-driven analysis of 3354 papers and 380 patents from the Web of Science Core Collection and Derwent Innovation Index databases up until 2023. The keyword co-occurrence network analysis and technology classification jointly revealed the main knowledge structure of algal toxin research, which is formed and interconnected by contaminants, treatment processes, toxicity, and degradation characteristics. Moreover, current research indicates that oxidation, photocatalysis, and adsorption are the main removal methods. Further exploration found that hot areas include the low-carbon degradation of algal toxins in eutrophic waters. In recent years, cylindrospermopsin and nodularin have become hot pollutants in algal toxin treatment. Currently, the research focuses more on the removal mechanism of algal toxins and the risk assessment under the exposure to cylindrospermopsin and nodularin. This study also summarizes the removal efficiencies and principles of physical, chemical, and biological methods in the algal toxin removal process, providing key information and guidance for researchers to have a deeper understanding of the field of treating algal toxins in water. </p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143944270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioaerosols in Various Working and Living Environments and Their Control Measure: A Review 各种工作和生活环境中的生物气溶胶及其控制措施综述
IF 6.4 2区 环境科学与生态学
Current Pollution Reports Pub Date : 2025-04-26 DOI: 10.1007/s40726-025-00354-w
Ke Lu, Jiali Zhang, Zhe Li, Yanpeng Li
{"title":"Bioaerosols in Various Working and Living Environments and Their Control Measure: A Review","authors":"Ke Lu,&nbsp;Jiali Zhang,&nbsp;Zhe Li,&nbsp;Yanpeng Li","doi":"10.1007/s40726-025-00354-w","DOIUrl":"10.1007/s40726-025-00354-w","url":null,"abstract":"<div><h3>Purpose of Review</h3><p>This review aims to reveal the pollution characteristics of bioaerosols across various working and living environments and evaluate existing control technologies. This will help enhance public awareness of bioaerosol pollution and the available control methods, and promote the diversity, efficiency, and operability of these technologies.</p><h3>Recent Findings</h3><p>Bioaerosols exhibit varying concentrations and community distributions across different environments due to diverse emission sources and environmental factors. Exposure to airborne pathogens poses health hazards, highlighting necessity for efficient antimicrobial techniques. While various technologies exhibit effective bactericidal capabilities, they also encounter numerous limitations in practical applications.</p><h3>Summary</h3><p>It is crucial to establish microbial risk assessment methods and develop efficient and low-cost control measures across various fields to create safe and healthy environments. This work lays the foundation for future research on bioaerosol pollution and control technologies, offering valuable insights for bioaerosol management and the protection of public health.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143877759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信