Noorunnisa M. Hanifa, Bavatharny Thevarajah, Vinoj Chamilka Liyanaarachchi, P. H. V. Nimarshana, Ramaraj Boopathy, Thilini U. Ariyadasa
{"title":"纺织湿法废水集成微藻培养同步生物修复、资源回收及天然染料生产研究进展","authors":"Noorunnisa M. Hanifa, Bavatharny Thevarajah, Vinoj Chamilka Liyanaarachchi, P. H. V. Nimarshana, Ramaraj Boopathy, Thilini U. Ariyadasa","doi":"10.1007/s40726-025-00363-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Microalgae exhibit immense potential for treating textile wet processing wastewater (TWPW), owing to efficient assimilation of pollutants while simultaneously generating valuable biomass for bio-based applications. This review investigates the integration of microalgae cultivation at different stages of textile wet processing (TWP) for TWPW treatment and resource recovery, addressing a key gap in literature, while emphasizing natural dye pigment production and sustainable biorefining potential within the circular bioeconomy principles.</p><h3>Recent Findings</h3><p>The textile industry, valued at USD 1837.27 billion, poses significant environmental challenges, due to the generation of chemically complex wastewater mainly during TWP. However, conventional treatment methods for TWPW are often inefficient and resource-intensive, whereas microalgae-integrated bioremediation provides a sustainable alternative, by removing pollutants through biosorption, biodegradation, and bioaccumulation/biotransformation, achieving ~ 99% nutrient removal. Furthermore, as eco-friendly alternatives to synthetic dyes, microalgae-derived natural pigments, including chlorophylls, carotenoids, and phycocyanin, are capable of dyeing a variety of textiles, such as cotton, silk, wool, and synthetic fibers. Particularly, <i>Chlorella</i> and <i>Spirulina</i> exhibit promising dyeing potential, with ~ 87% of uptake efficiency and excellent colorfasness.</p><h3>Summary</h3><p>This review critically evaluates the feasibility of microalgae-integrated TWPW treatment, emphasizing the wastewater characteristics and the treatment potential of microalgae. Furthermore, the study evaluates the potential of microalgae pigment as a sustainable alternative to synthetic dyes and the valorization of residual biomass into low-value products, promoting a circular bioeconomy in the textile industry. Hence, the review concludes by highlighting the requirement for a paradigm shift in the current research to optimize industrial-scale TWPW bioremediation and the use of microalgae-derived pigments for textile dyeing.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Bioremediation, Resource Recovery and Natural Dye Production via Textile Wet Processing Wastewater-integrated Microalgae Cultivation: A Review\",\"authors\":\"Noorunnisa M. Hanifa, Bavatharny Thevarajah, Vinoj Chamilka Liyanaarachchi, P. H. V. Nimarshana, Ramaraj Boopathy, Thilini U. Ariyadasa\",\"doi\":\"10.1007/s40726-025-00363-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>Microalgae exhibit immense potential for treating textile wet processing wastewater (TWPW), owing to efficient assimilation of pollutants while simultaneously generating valuable biomass for bio-based applications. This review investigates the integration of microalgae cultivation at different stages of textile wet processing (TWP) for TWPW treatment and resource recovery, addressing a key gap in literature, while emphasizing natural dye pigment production and sustainable biorefining potential within the circular bioeconomy principles.</p><h3>Recent Findings</h3><p>The textile industry, valued at USD 1837.27 billion, poses significant environmental challenges, due to the generation of chemically complex wastewater mainly during TWP. However, conventional treatment methods for TWPW are often inefficient and resource-intensive, whereas microalgae-integrated bioremediation provides a sustainable alternative, by removing pollutants through biosorption, biodegradation, and bioaccumulation/biotransformation, achieving ~ 99% nutrient removal. Furthermore, as eco-friendly alternatives to synthetic dyes, microalgae-derived natural pigments, including chlorophylls, carotenoids, and phycocyanin, are capable of dyeing a variety of textiles, such as cotton, silk, wool, and synthetic fibers. Particularly, <i>Chlorella</i> and <i>Spirulina</i> exhibit promising dyeing potential, with ~ 87% of uptake efficiency and excellent colorfasness.</p><h3>Summary</h3><p>This review critically evaluates the feasibility of microalgae-integrated TWPW treatment, emphasizing the wastewater characteristics and the treatment potential of microalgae. Furthermore, the study evaluates the potential of microalgae pigment as a sustainable alternative to synthetic dyes and the valorization of residual biomass into low-value products, promoting a circular bioeconomy in the textile industry. Hence, the review concludes by highlighting the requirement for a paradigm shift in the current research to optimize industrial-scale TWPW bioremediation and the use of microalgae-derived pigments for textile dyeing.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00363-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00363-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Simultaneous Bioremediation, Resource Recovery and Natural Dye Production via Textile Wet Processing Wastewater-integrated Microalgae Cultivation: A Review
Purpose of Review
Microalgae exhibit immense potential for treating textile wet processing wastewater (TWPW), owing to efficient assimilation of pollutants while simultaneously generating valuable biomass for bio-based applications. This review investigates the integration of microalgae cultivation at different stages of textile wet processing (TWP) for TWPW treatment and resource recovery, addressing a key gap in literature, while emphasizing natural dye pigment production and sustainable biorefining potential within the circular bioeconomy principles.
Recent Findings
The textile industry, valued at USD 1837.27 billion, poses significant environmental challenges, due to the generation of chemically complex wastewater mainly during TWP. However, conventional treatment methods for TWPW are often inefficient and resource-intensive, whereas microalgae-integrated bioremediation provides a sustainable alternative, by removing pollutants through biosorption, biodegradation, and bioaccumulation/biotransformation, achieving ~ 99% nutrient removal. Furthermore, as eco-friendly alternatives to synthetic dyes, microalgae-derived natural pigments, including chlorophylls, carotenoids, and phycocyanin, are capable of dyeing a variety of textiles, such as cotton, silk, wool, and synthetic fibers. Particularly, Chlorella and Spirulina exhibit promising dyeing potential, with ~ 87% of uptake efficiency and excellent colorfasness.
Summary
This review critically evaluates the feasibility of microalgae-integrated TWPW treatment, emphasizing the wastewater characteristics and the treatment potential of microalgae. Furthermore, the study evaluates the potential of microalgae pigment as a sustainable alternative to synthetic dyes and the valorization of residual biomass into low-value products, promoting a circular bioeconomy in the textile industry. Hence, the review concludes by highlighting the requirement for a paradigm shift in the current research to optimize industrial-scale TWPW bioremediation and the use of microalgae-derived pigments for textile dyeing.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.