Ibnu Maulana Hidayatullah, Soen Steven, Adi Kusmayadi, Iftita Rahmatika, Muhammad Reski, Ramaraj Boopathy, Muhamad Akmal Alfatan, Putri Wilhelmina Gusanti Purba
{"title":"抗生素生物降解研究进展:减轻环境污染和耐药性的新策略和挑战","authors":"Ibnu Maulana Hidayatullah, Soen Steven, Adi Kusmayadi, Iftita Rahmatika, Muhammad Reski, Ramaraj Boopathy, Muhamad Akmal Alfatan, Putri Wilhelmina Gusanti Purba","doi":"10.1007/s40726-025-00369-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>The various disease outbreaks have increased the consumption of antibiotics. Unfortunately, this condition can further increase the accumulation of antibiotics that can pollute the environment and even human health. Biodegradation is one method to reduce or even eliminate the accumulation of antibiotics. This review aims to discuss the sources of antibiotics in the environment, mechanisms of antibiotic biodegradation, factors affecting the biodegradation process, ecological risks, regulatory implications, current strategies that have been implemented, and innovative approaches to reduce antibiotic resistance and environmental contamination.</p><h3>Recent Findings</h3><p>Recent studies have highlighted antibiotic resistance in aquatic and soil environments. This increases the threat of antibiotic-resistant bacterial populations. Biodegradation techniques such as biological wastewater treatment, wetlands, microbial degradation, and algal degradation have been able to show satisfactory performance. In particular, microbial consortia and genetic modification of bacteria, fungi, and microalgae can also provide synergistic metabolic pathways that enhance the efficiency of antibiotic degradation. In addition, biogenic nanoparticles and enzyme-assisted degradation methods, such as laccases, can be advanced innovative approaches for antibiotic biodegradation. </p><h3>Summary</h3><p>Antibiotic biodegradation has been a pivotal research focus due to increasing environmental pollution and the risk of antibiotic resistance. This topic is promising in decomposing antibiotics into compounds that are more tolerant of the environment. Although there has been progress in antibiotic biodegradation research, further studies should be conducted to overcome challenges such as the complexity of the compounds, antibiotic stability, antibiotic and gene resistance phenomena, and non-optimal environmental factors. </p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Antibiotic Biodegradation: Emerging Strategies and Challenges in Mitigating Environmental Contamination and Resistance\",\"authors\":\"Ibnu Maulana Hidayatullah, Soen Steven, Adi Kusmayadi, Iftita Rahmatika, Muhammad Reski, Ramaraj Boopathy, Muhamad Akmal Alfatan, Putri Wilhelmina Gusanti Purba\",\"doi\":\"10.1007/s40726-025-00369-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose of Review</h3><p>The various disease outbreaks have increased the consumption of antibiotics. Unfortunately, this condition can further increase the accumulation of antibiotics that can pollute the environment and even human health. Biodegradation is one method to reduce or even eliminate the accumulation of antibiotics. This review aims to discuss the sources of antibiotics in the environment, mechanisms of antibiotic biodegradation, factors affecting the biodegradation process, ecological risks, regulatory implications, current strategies that have been implemented, and innovative approaches to reduce antibiotic resistance and environmental contamination.</p><h3>Recent Findings</h3><p>Recent studies have highlighted antibiotic resistance in aquatic and soil environments. This increases the threat of antibiotic-resistant bacterial populations. Biodegradation techniques such as biological wastewater treatment, wetlands, microbial degradation, and algal degradation have been able to show satisfactory performance. In particular, microbial consortia and genetic modification of bacteria, fungi, and microalgae can also provide synergistic metabolic pathways that enhance the efficiency of antibiotic degradation. In addition, biogenic nanoparticles and enzyme-assisted degradation methods, such as laccases, can be advanced innovative approaches for antibiotic biodegradation. </p><h3>Summary</h3><p>Antibiotic biodegradation has been a pivotal research focus due to increasing environmental pollution and the risk of antibiotic resistance. This topic is promising in decomposing antibiotics into compounds that are more tolerant of the environment. Although there has been progress in antibiotic biodegradation research, further studies should be conducted to overcome challenges such as the complexity of the compounds, antibiotic stability, antibiotic and gene resistance phenomena, and non-optimal environmental factors. </p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-025-00369-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00369-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Advances in Antibiotic Biodegradation: Emerging Strategies and Challenges in Mitigating Environmental Contamination and Resistance
Purpose of Review
The various disease outbreaks have increased the consumption of antibiotics. Unfortunately, this condition can further increase the accumulation of antibiotics that can pollute the environment and even human health. Biodegradation is one method to reduce or even eliminate the accumulation of antibiotics. This review aims to discuss the sources of antibiotics in the environment, mechanisms of antibiotic biodegradation, factors affecting the biodegradation process, ecological risks, regulatory implications, current strategies that have been implemented, and innovative approaches to reduce antibiotic resistance and environmental contamination.
Recent Findings
Recent studies have highlighted antibiotic resistance in aquatic and soil environments. This increases the threat of antibiotic-resistant bacterial populations. Biodegradation techniques such as biological wastewater treatment, wetlands, microbial degradation, and algal degradation have been able to show satisfactory performance. In particular, microbial consortia and genetic modification of bacteria, fungi, and microalgae can also provide synergistic metabolic pathways that enhance the efficiency of antibiotic degradation. In addition, biogenic nanoparticles and enzyme-assisted degradation methods, such as laccases, can be advanced innovative approaches for antibiotic biodegradation.
Summary
Antibiotic biodegradation has been a pivotal research focus due to increasing environmental pollution and the risk of antibiotic resistance. This topic is promising in decomposing antibiotics into compounds that are more tolerant of the environment. Although there has been progress in antibiotic biodegradation research, further studies should be conducted to overcome challenges such as the complexity of the compounds, antibiotic stability, antibiotic and gene resistance phenomena, and non-optimal environmental factors.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.