Atmospheric Amines: Advances in Analytical Techniques, Emission Inventories, Regional Pollution, and Roles in New Particle Formation

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qi Yu, Nan Fu, Jiajia Lu, Yukai Zhang, Wei Du, Junfeng Wang
{"title":"Atmospheric Amines: Advances in Analytical Techniques, Emission Inventories, Regional Pollution, and Roles in New Particle Formation","authors":"Qi Yu,&nbsp;Nan Fu,&nbsp;Jiajia Lu,&nbsp;Yukai Zhang,&nbsp;Wei Du,&nbsp;Junfeng Wang","doi":"10.1007/s40726-025-00364-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose of Review</h3><p>Amines, as atmospheric pollutants, significantly impact air quality, climate change, and human health because they readily react with acidic gases in the atmosphere to form secondary organic aerosols (SOA) and participate in the formation of fine particulate matter (PM<sub>2.5</sub>). This review summarizes the research progress on atmospheric amine, including analytical methods, emission inventory, and regional pollution, as well as their significance in the course of new particle formation (NPF).</p><h3>Recent Findings</h3><p>At present, the detection methods for amines mainly include chromatography and mass spectrometry, among which the development of online measurement technology helps to improve time resolution and research depth. The severe lack of field-measured emission factors has hindered the model’s simulation of amine effects. The concentration and main components of particulate amines show significant differences in different regions and seasons. The sulfuric acid (H<sub>2</sub>SO<sub>4</sub>)-H<sub>2</sub>O-amine ternary nucleation theory is widely recognized, but field measurements have also revealed the influence of other organic compounds. In general, amines have a critical impact on atmospheric chemical reactions, particularly their support in the generation of new particles and SOA, which makes them a vital factor in climate transform research.</p><h3>Summary</h3><p>This review not only provides the latest research findings on amines but also points out the deficiencies in current studies. It emphasizes the need for systematic research on the emissions, the mechanisms of NPF. The ultimate goal is to contribute to mitigating atmospheric pollution and protecting public health.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-025-00364-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of Review

Amines, as atmospheric pollutants, significantly impact air quality, climate change, and human health because they readily react with acidic gases in the atmosphere to form secondary organic aerosols (SOA) and participate in the formation of fine particulate matter (PM2.5). This review summarizes the research progress on atmospheric amine, including analytical methods, emission inventory, and regional pollution, as well as their significance in the course of new particle formation (NPF).

Recent Findings

At present, the detection methods for amines mainly include chromatography and mass spectrometry, among which the development of online measurement technology helps to improve time resolution and research depth. The severe lack of field-measured emission factors has hindered the model’s simulation of amine effects. The concentration and main components of particulate amines show significant differences in different regions and seasons. The sulfuric acid (H2SO4)-H2O-amine ternary nucleation theory is widely recognized, but field measurements have also revealed the influence of other organic compounds. In general, amines have a critical impact on atmospheric chemical reactions, particularly their support in the generation of new particles and SOA, which makes them a vital factor in climate transform research.

Summary

This review not only provides the latest research findings on amines but also points out the deficiencies in current studies. It emphasizes the need for systematic research on the emissions, the mechanisms of NPF. The ultimate goal is to contribute to mitigating atmospheric pollution and protecting public health.

大气胺:分析技术进展,排放清单,区域污染,以及在新粒子形成中的作用
胺作为大气污染物,极易与大气中的酸性气体反应形成二次有机气溶胶(SOA)并参与细颗粒物(PM2.5)的形成,对空气质量、气候变化和人类健康产生重大影响。本文综述了大气中胺的研究进展,包括分析方法、排放清单和区域污染,以及它们在新颗粒形成过程中的意义。目前,胺类化合物的检测方法主要有色谱法和质谱法,其中在线测量技术的发展有助于提高时间分辨率和研究深度。严重缺乏现场测量的排放因子阻碍了模型对胺效应的模拟。颗粒物胺的浓度和主要成分在不同地区和季节存在显著差异。硫酸(H2SO4)-水胺三元成核理论得到广泛认可,但现场测量也揭示了其他有机化合物的影响。总的来说,胺类物质对大气化学反应有重要影响,特别是它们对新粒子和SOA生成的支持作用,这使它们成为气候变化研究中的重要因素。本文综述了胺类化合物的最新研究成果,并指出了目前研究的不足。强调有必要对NPF的排放、机制进行系统研究。最终目标是为减轻大气污染和保护公众健康作出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Pollution Reports
Current Pollution Reports Environmental Science-Water Science and Technology
CiteScore
12.10
自引率
1.40%
发文量
31
期刊介绍: Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信