{"title":"Circadian rhythms in renal metabolism","authors":"Yohan Bignon, Dmitri Firsov","doi":"10.1016/j.cophys.2025.100814","DOIUrl":"10.1016/j.cophys.2025.100814","url":null,"abstract":"<div><div>The kidney has one of the highest resting metabolic rates among human tissues. Most of the produced ATP is used for solutes and water reabsorption along the renal tubule. However, circadian rhythmicity in the glomerular filtration rate results in substantial circadian variations in the amounts of solutes and water to be reabsorbed at a given circadian time. Moreover, circadian rhythmicity in the renal blood flow causes circadian oscillations in available oxygen and metabolic substrates in kidney tissue. Collectively, this suggests that processes involved in energy consumption and energy production in the kidney follow circadian rhythms that parallel those in tubular reabsorption. In this review, we summarize recent progress in the identification of rhythmic renal metabolic pathways that are entrained by the intrinsic tubular circadian clock.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"43 ","pages":"Article 100814"},"PeriodicalIF":2.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Xander , Mariana O Gonçalves, Ana C Torrecilhas
{"title":"Extracellular vesicles released by Trypanosoma cruzi and Leishmania spp.: protozoan parasite–host interaction mechanism","authors":"Patricia Xander , Mariana O Gonçalves, Ana C Torrecilhas","doi":"10.1016/j.cophys.2024.100792","DOIUrl":"10.1016/j.cophys.2024.100792","url":null,"abstract":"<div><div>Extracellular vesicles (EVs) released by the protozoa parasites <em>Trypanosoma cruzi</em> and <em>Leishmania</em> spp. and host communication have received increased attention and achieved greater significance in recent years. This review focuses on the operation and consequences of the communication channel, which provides important insights into a variety of infectious disease characteristics and host immune responses. We highlight the most important discoveries, explain the underlying mechanisms, and discuss the implications for basic science and potential treatments. These EVs play a critical role in the parasite's ability to spread infection and alter the host’s immune response. However, there are some gaps in the research in this field, particularly in functional biological features that could help us understand the conditions and mechanisms underlying protozoan EV release. Therefore, more research is needed, as understanding the mechanisms underlying pathogen–host interaction is critical to treating endemic parasitic diseases. Given that EVs are promising candidates for vaccination, diagnosis, and therapy, this could lay the groundwork for the development of novel therapeutic approaches. Furthermore, there is no vaccine available for Chagas disease, which is extremely difficult to treat and manage.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"43 ","pages":"Article 100792"},"PeriodicalIF":2.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The two-sided impact of beta-adrenergic receptor ligands on inflammation","authors":"Paulina Dragan, Dorota Latek","doi":"10.1016/j.cophys.2024.100779","DOIUrl":"10.1016/j.cophys.2024.100779","url":null,"abstract":"<div><div>Beta-adrenergic receptors (β-ARs) encompass three distinct subtypes, which participate in modulating inflammatory responses. Both agonists and antagonists of these receptors are used to treat numerous diseases and have often been observed to have a protective role on different kinds of tissues. β-AR antagonists are used to treat cardiovascular diseases and chronic obstructive pulmonary disease but may worsen inflammation in neurodegenerative disorders. However, two β-AR antagonists, carvedilol and nebivolol, can attenuate the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. Many β-AR agonists have proved to mediate anti-inflammatory signals, especially in regard to suppressing the inflammatory response of macrophages or providing protective effects in cases of hypoxia. The activation of beta-adrenergic receptors can, however, be a double-edged sword, as their overactivation may result in cardiac inflammation. Here, we aim to provide an overview of recent advances in studying the connection between β-ARs and inflammation.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"41 ","pages":"Article 100779"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adrenergic modulation of neutrophil and macrophage functions: pathophysiological cues","authors":"Carmen Vida , Yadileiny Portilla , Cristina Murga","doi":"10.1016/j.cophys.2024.100780","DOIUrl":"10.1016/j.cophys.2024.100780","url":null,"abstract":"<div><div>In this review, we will summarize current and past findings on the adrenergic regulation of myeloid cell functions and dynamics, with special emphasis on the pathophysiological impact of such modulation. Adrenergic signaling has traditionally been described to be immunosuppressive, but some recent results are challenging this paradigm, in particular those related to <em>in vivo</em> models of stress and findings in human patients. Also, cumulative evidence reveals that the final pro- or anti-inflammatory outcome of adrenergic inputs in myeloid cells appears to be very dependent on the experimental setup utilized or on the cellular context (resting vs stimulated conditions, <em>in vivo</em> vs <em>in vitro</em> settings, mice vs human cells, health vs pathology). Varying doses and/or time points may result in seemingly contradictory results that depend on the nature of receptor engaged (α or β adrenergic receptor subtypes), the downstream cascades involved, the presence of additional stimulatory or inhibitory signals, and the actual kinetics of the process studied. We will thus address some of these apparently paradoxical findings, review several pathological settings in which adrenergic modulation of neutrophil or macrophage-mediated immunity is relevant, and discuss open questions that still remain unanswered.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"41 ","pages":"Article 100780"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial overview: Sex differences in personalized medicine and beyond","authors":"Mark J Kohr, Susan E Howlett, Licy Yanes Cardozo","doi":"10.1016/j.cophys.2024.100777","DOIUrl":"10.1016/j.cophys.2024.100777","url":null,"abstract":"","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"42 ","pages":"Article 100777"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lilly Underwood, Chun-sun Jiang, Joo-Yeun Oh, Priscila Y Sato
{"title":"Unheralded adrenergic receptor signaling in cellular oxidative stress and death","authors":"Lilly Underwood, Chun-sun Jiang, Joo-Yeun Oh, Priscila Y Sato","doi":"10.1016/j.cophys.2024.100766","DOIUrl":"https://doi.org/10.1016/j.cophys.2024.100766","url":null,"abstract":"<div><p>Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"40 ","pages":"Article 100766"},"PeriodicalIF":2.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biogenesis and secretion of mitovesicles, small extracellular vesicles of mitochondrial origin at the crossroads between brain health and disease","authors":"Yohan Kim , Pasquale D’Acunzo , Efrat Levy","doi":"10.1016/j.cophys.2024.100765","DOIUrl":"10.1016/j.cophys.2024.100765","url":null,"abstract":"<div><p>In the brain, mitochondrial components are released into the extracellular space via several mechanisms, including a recently identified type of extracellular vesicles called mitovesicles. While vesiculation of neuronal mitochondria yields various intracellular types of vesicles, with either a single or a double membrane, mitovesicles secreted into the extracellular space are a unique subtype of these mitochondria-derived vesicles, with a double membrane and a specific set of mitochondrial DNA, RNA, proteins, and lipids. Based on the most relevant literature describing mitochondrial vesiculation and mitochondrial exocytosis, we propose a model for their secretion when the amphisomes, a hybrid endosome–autophagosome organelle, fuse with the plasma membrane, releasing mitovesicles and exosomes into the extracellular space. In aging and neurodegenerative disorders, mitochondrial dysfunction, in association with endolysosomal abnormalities, alter mitovesicle number and content, with downstream effect on brain health.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"40 ","pages":"Article 100765"},"PeriodicalIF":2.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141402063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Worawan B Limpitikul , Marta Garcia-Contreras , Saumya Das
{"title":"The emerging role of extracellular vesicle RNAs as mediators of cardiometabolic diseases: from pathophysiology to clinical applications","authors":"Worawan B Limpitikul , Marta Garcia-Contreras , Saumya Das","doi":"10.1016/j.cophys.2024.100764","DOIUrl":"https://doi.org/10.1016/j.cophys.2024.100764","url":null,"abstract":"<div><p>Cardiometabolic diseases (CMDs) are a leading contributor to worldwide morbidity and mortality. Recent insights into the pathogenesis of CMDs reveal crucial roles of intercellular crosstalk between metabolically active organs and cardiac cells. In this context, extracellular vesicles (EVs), lipid membrane-delimited particles containing diverse cargo (including small and long RNAs, proteins, lipids, and metabolites), and nonvesicular extracellular particles (NVEPs) have emerged as key mediators of cell-to-cell communications. EV cargo can reflect the metabolic state of their cells of origin and affect the function of their target cells. Understanding EV cargo content and function is essential for unraveling the pathophysiology of CMDs. This mini-review describes recent studies on EV-mediated local and interorgan crosstalk in CMDs, focusing on those that lead to atrial and ventricular myopathy, which are hallmarks of atrial fibrillation and heart failure, respectively. Lastly, this review discusses the potential applications of EVs in the diagnostics and therapeutics of these CMDs.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"40 ","pages":"Article 100764"},"PeriodicalIF":2.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Pérez-Capó , Antònia Obrador-Hevia , Diego de Miguel-Perez , Christian Rolfo
{"title":"Engineered extracellular vesicles for cancer drug delivery and therapeutics","authors":"Marina Pérez-Capó , Antònia Obrador-Hevia , Diego de Miguel-Perez , Christian Rolfo","doi":"10.1016/j.cophys.2024.100755","DOIUrl":"10.1016/j.cophys.2024.100755","url":null,"abstract":"<div><p>The battle against cancer remains a formidable challenge despite ongoing efforts worldwide. Current treatments are limited, leading to increased interest in personalized approaches, including drug delivery via extracellular vesicles (EVs). EVs are lipid bilayer particles released by cells that play a crucial role in intercellular communication by transferring biological compounds. Recent preclinical studies have demonstrated that EVs are also effective delivery vehicles for other cargo, such as chemotherapeutic drugs, immunotherapeutic agents, or nucleic acid–based therapeutics with improved pharmacokinetics. This review focuses on the latest advances on EVs as drug carriers in cancer therapy, pointing out the current ongoing clinical trials testing the potential of molecules, such as interleukin-12, STING agonists, or KRAS-G12D small interfering RNA. The evolving landscape of EVs in targeted cancer therapeutics holds significant promise for developing safer, personalized, and cell-free therapies.</p></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"39 ","pages":"Article 100755"},"PeriodicalIF":2.5,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}