Mingliang Pan , Zhixin Li , Xiaohong Wang , Liying Zhan , Guo-Chang Fan
{"title":"非编码rna在心肌缺血/再灌注损伤及修复中的作用","authors":"Mingliang Pan , Zhixin Li , Xiaohong Wang , Liying Zhan , Guo-Chang Fan","doi":"10.1016/j.cophys.2025.100825","DOIUrl":null,"url":null,"abstract":"<div><div>Myocardial ischemia/reperfusion (I/R) usually triggers a series of molecular and cellular changes, which yield excessive oxidative stress and massive cardiomyocyte death, leading to sterile inflammation, cardiac fibrosis, and, eventually, heart failure. Over the past two decades, numerous studies have demonstrated that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), involve almost every aspect of adverse cardiac remodeling induced by I/R. They have emerged as key regulators in the process of cardiac cell death (i.e<em>.</em> apoptosis, necroptosis, ferroptosis, pyroptosis, and PANoptosis), fibrosis, angiogenesis, and immune responses during myocardial I/R. Herein, this review summarizes recent advancements on ncRNA-mediated regulation of cardiac cell death, cardiac angiogenesis, fibrosis, and macrophage function as well as intercellular communication following myocardial I/R. Finally, the therapeutic potential of ncRNAs for treating myocardial I/R injury and future research directions are also discussed.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100825"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncoding RNAs in myocardial ischemia/reperfusion injury and repair\",\"authors\":\"Mingliang Pan , Zhixin Li , Xiaohong Wang , Liying Zhan , Guo-Chang Fan\",\"doi\":\"10.1016/j.cophys.2025.100825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myocardial ischemia/reperfusion (I/R) usually triggers a series of molecular and cellular changes, which yield excessive oxidative stress and massive cardiomyocyte death, leading to sterile inflammation, cardiac fibrosis, and, eventually, heart failure. Over the past two decades, numerous studies have demonstrated that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), involve almost every aspect of adverse cardiac remodeling induced by I/R. They have emerged as key regulators in the process of cardiac cell death (i.e<em>.</em> apoptosis, necroptosis, ferroptosis, pyroptosis, and PANoptosis), fibrosis, angiogenesis, and immune responses during myocardial I/R. Herein, this review summarizes recent advancements on ncRNA-mediated regulation of cardiac cell death, cardiac angiogenesis, fibrosis, and macrophage function as well as intercellular communication following myocardial I/R. Finally, the therapeutic potential of ncRNAs for treating myocardial I/R injury and future research directions are also discussed.</div></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"44 \",\"pages\":\"Article 100825\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867325000136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867325000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Noncoding RNAs in myocardial ischemia/reperfusion injury and repair
Myocardial ischemia/reperfusion (I/R) usually triggers a series of molecular and cellular changes, which yield excessive oxidative stress and massive cardiomyocyte death, leading to sterile inflammation, cardiac fibrosis, and, eventually, heart failure. Over the past two decades, numerous studies have demonstrated that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), involve almost every aspect of adverse cardiac remodeling induced by I/R. They have emerged as key regulators in the process of cardiac cell death (i.e. apoptosis, necroptosis, ferroptosis, pyroptosis, and PANoptosis), fibrosis, angiogenesis, and immune responses during myocardial I/R. Herein, this review summarizes recent advancements on ncRNA-mediated regulation of cardiac cell death, cardiac angiogenesis, fibrosis, and macrophage function as well as intercellular communication following myocardial I/R. Finally, the therapeutic potential of ncRNAs for treating myocardial I/R injury and future research directions are also discussed.