Georgios K Paschos, Ronan Lordan, Garret A FitzGerald
{"title":"Intersection of sex and circadian biology","authors":"Georgios K Paschos, Ronan Lordan, Garret A FitzGerald","doi":"10.1016/j.cophys.2025.100834","DOIUrl":"10.1016/j.cophys.2025.100834","url":null,"abstract":"<div><div>The circadian clock aligns behavior and physiology with environmental rhythms, and its disruption has been associated with increased risk of metabolic and neurological diseases. This review examines the emerging trends and mounting evidence demonstrating that there are sex-specific differences in circadian physiology relevant to health. Preclinical and clinical studies indicate that females exhibit greater circadian resilience, robust transcriptional rhythms, and resistance to clock perturbation compared to males. These influences affect susceptibility to metabolic conditions and responses to circadian perturbations like shift work. Notably, sex differences in response to alcohol consumption and cancer chronotherapy have emerged as fields of significant interest. Future research must consider both sexes to refine existing interventions and uncover the complex mechanisms of circadian physiology for more inclusive therapeutic strategies.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100834"},"PeriodicalIF":2.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144269989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circadian control of cellular constituent turnover and growth","authors":"Jeffrey J Kelu","doi":"10.1016/j.cophys.2025.100837","DOIUrl":"10.1016/j.cophys.2025.100837","url":null,"abstract":"<div><div>The circadian clock synchronises biological processes with environmental cues, optimising fitness and energy efficiency. Among these, cell growth regulation is a critical yet underexplored area. While primarily linked to rhythmic cell division, cell growth also arises from the cyclic accumulation of cellular components driving volume expansion. This review highlights advances in understanding how the circadian clock regulates the synthesis and degradation of key cellular constituents, particularly RNAs and proteins, in both homeostatic and growing cells. These processes are essential for maintaining cellular homeostasis and supporting tissue development and regeneration. Further exploration of circadian turnover and its integration with cellular growth pathways could pave the way for chronotherapeutic strategies.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100837"},"PeriodicalIF":2.5,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144280006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SHP2 happens, just sail with it: the role of the protein tyrosine phosphatase SHP2 in autoimmune and autoinflammatory diseases","authors":"Samantha Le Sommer , Maria I Kontaridis","doi":"10.1016/j.cophys.2025.100833","DOIUrl":"10.1016/j.cophys.2025.100833","url":null,"abstract":"<div><div>Autoimmune and autoinflammatory diseases are a diverse group of disorders that stem from aberrant immune responses against self. While autoimmune disorders are characterized by lymphocyte-driven antigen-specific responses, autoinflammatory diseases are driven by chronic activation of the innate immune system. However, to date, both groups of disorders lack clear understanding for their onset and the functional mechanisms conducive to their pathology and have few efficacious, safe, and/or curative treatment options for patients. The SH2 domain–containing protein tyrosine phosphatase (SHP2), the protein encoded by the <em>PTPN11</em> gene, is a nodal enzyme involved in embryogenesis, development, proliferation, differentiation, and survival of cells. Mutations in <em>PTPN11</em> are associated with the development of congenital disorders as well as several types of cancers. Recently, links between autoimmunity and genetic developmental disorders have also revealed a key role for SHP2 activity in autoimmune–autoinflammatory pathophysiology. Its association with these disorders has begun to unravel the molecular mechanisms that contribute to the onset of autoimmunity. In this review, we will discuss the emergent role of SHP2 in autoimmunity and the current known and unknown molecular mechanisms of its regulation in these processes and propose the translational impact it may have as a therapeutic in the near future.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100833"},"PeriodicalIF":2.5,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From clock genes to exercise: shaping the field of Exercise Chronophysiology","authors":"Andrea Ciorciari , Katja A Lamia","doi":"10.1016/j.cophys.2025.100835","DOIUrl":"10.1016/j.cophys.2025.100835","url":null,"abstract":"<div><div>Circadian rhythms, regulated by central and peripheral clocks, shape physiological processes through clock gene activity and external cues, modulating metabolic pathways, hormonal regulation, and body temperature. By acting on these factors, exercise serves as a powerful zeitgeber, impacting the timing of biological functions. This review highlights insights from molecular to behavioral aspects, examining exercise's role in addressing circadian disruptions, its therapeutic potential for metabolic, psychiatric, and cancer-related conditions, and its applications in enhancing physical performance. Exercise Chronophysiology emerges as a promising integrative approach, offering innovative strategies for promoting health, preventing disease, and optimizing athletic performance.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100835"},"PeriodicalIF":2.5,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144269988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of lncRNAs in pathophysiology of obesity","authors":"Vikram Krishnappa Shettigar, Venkata Naga Srikanth Garikipati","doi":"10.1016/j.cophys.2025.100832","DOIUrl":"10.1016/j.cophys.2025.100832","url":null,"abstract":"<div><div>Obesity is a growing problem worldwide, with its pathophysiology being keenly explored. Previously, the noncoding transcriptome was considered transcriptional noise with no functional relevance. However, emerging evidence suggests a critical role for noncoding RNAs, especially long noncoding RNAs (lncRNAs), in obesity. Several lncRNAs have been identified that facilitate the development of obesity (such as <em>LINK-A)</em> or resist obesity (such as lnc266). These findings emphasize the importance of the study of lncRNA, which could be the master regulators of disease progression and the key to the development of novel therapeutics.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100832"},"PeriodicalIF":2.5,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial ncRNAs beyond the mitochondrion: coordinators of organelle crosstalk","authors":"Sidhant Khatri, Anna Blumental-Perry","doi":"10.1016/j.cophys.2025.100831","DOIUrl":"10.1016/j.cophys.2025.100831","url":null,"abstract":"<div><div>The mitochondrion contains its own genome that encodes subunits of respiratory complexes, components of the translation machinery, and numerous noncoding RNAs (ncRNAs). Some of these ncRNAs are antisense transcripts of their respective genes, regulating their maturation within mitochondria. Others facilitate mitochondria-to-nucleus communication, conveying mitochondrial status to the nucleus and coordinating synergy between the genomes. The first known mito-ncRNAs that exit mitochondria were those generated from the control regions of the mitochondrial genome. Recent evidence suggests that this phenomenon is broader, encompassing multiple mitochondrial sense and antisense transcripts and mito-tRNAs. mito-ncRNAs are regulated by the proliferative state of the cell, physiological stresses, and viral infections. Both within and outside the organelle, mito-ncRNAs serve as scaffolds for protein complex assembly, as modulators of promoter occupancy, heterochromatin states, nucleolar functions, and spliceosome selectivity, and as precursors and regulators of miRNA networks. Here, we summarize and discuss current knowledge regarding mito-ncRNA-mediated signaling pathways.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100831"},"PeriodicalIF":2.5,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144107859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial connection to Alzheimer’s disease and heart failure","authors":"Anupriya Sinha , Natasha Jaiswal , Pooja Jadiya , Dhanendra Tomar","doi":"10.1016/j.cophys.2025.100830","DOIUrl":"10.1016/j.cophys.2025.100830","url":null,"abstract":"<div><div>The brain and heart are intricately linked, with dysfunction in one organ often affecting the other. Cardiovascular diseases (CVDs), particularly heart failure, impair cerebral blood flow, contributing to cognitive decline and increasing dementia risk. Conversely, Alzheimer’s disease (AD), marked by amyloid-beta plaques and tau tangles, impacts cardiac function. A shared mechanism between AD and CVDs is mitochondrial dysfunction, which disrupts energy production and oxidative balance, worsening both neurodegeneration and heart health. This interdependence underscores the potential for mitochondria-targeted therapies to address both conditions. With an aging population facing rising incidences of AD and CVDs, understanding these interconnected pathways and the central role of mitochondria could inform new therapeutic strategies and improve outcomes in both neurodegenerative and cardiovascular diseases.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100830"},"PeriodicalIF":2.5,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143928240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela P Diniz, Joanne Chan, John D Mably, Da-Zhi Wang
{"title":"Impact of microRNAs and long noncoding RNAs in skeletal and cardiac muscles","authors":"Gabriela P Diniz, Joanne Chan, John D Mably, Da-Zhi Wang","doi":"10.1016/j.cophys.2025.100829","DOIUrl":"10.1016/j.cophys.2025.100829","url":null,"abstract":"<div><div>Recent advances in technology have accelerated our ability to define the functions of noncoding RNA (ncRNA). Beyond their known roles in regulating molecular and cellular processes, new mechanisms and interacting partners for ncRNAs have been revealed. In this review, we focus on recent discoveries of long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) in skeletal and cardiac muscles. In addition to sharing a sarcomeric organization and contractile function, both tissues also utilize similar mechanisms and genetic networks during myogenic differentiation, tissue repair, and regeneration and in disease progression. Thus, knowledge gained about the roles of these ncRNAs in cardiac and skeletal muscles may reveal shared mechanisms and functions relevant to both muscle types as well as to understanding their rules in other tissues. Ultimately, this information could be exploited to develop new diagnostic biomarkers and novel therapies for diseases affecting cardiac and skeletal muscle.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100829"},"PeriodicalIF":2.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143906169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current advances in protein phosphatases in kidney disease","authors":"Marina Rousseau, Pedro Geraldes","doi":"10.1016/j.cophys.2025.100828","DOIUrl":"10.1016/j.cophys.2025.100828","url":null,"abstract":"<div><div>Chronic kidney disease (CKD) affects a large portion of the global population and is characterized by alterations in kidney function. Unfortunately, patients who progress to end-stage kidney disease have little chance of kidney function reversal and will ultimately need dialysis or a kidney transplant. Therefore, understanding the underlying mechanisms of CKD progression is critical for developing new therapies. Protein phosphatases are essential regulators of signal transduction in the normal function of cells. The deregulation of different protein phosphatases has been associated with kidney disease onset and progression. This review aims to highlight the recent advances in the role of protein phosphatases in kidney health and disease. Mainly, attention will be brought to three of the four main families of protein phosphatases (serine/threonine, protein tyrosine, and dual-specificity phosphatases). Since kidney disease encompasses a wide range of pathologies, this review will focus on glomerulopathies, diabetic kidney disease, acute kidney injury, and advanced CKD/fibrosis.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100828"},"PeriodicalIF":2.5,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143892203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achala Theres P Moncy , Samarjit Das , Hannah R Vasanthi
{"title":"Emerging role of exosomal-microRNA in obesity","authors":"Achala Theres P Moncy , Samarjit Das , Hannah R Vasanthi","doi":"10.1016/j.cophys.2025.100827","DOIUrl":"10.1016/j.cophys.2025.100827","url":null,"abstract":"<div><div>Exosomes are small extracellular vesicles released by every living cell in the human body and can be found in the circulation of almost every biological fluids. They majorly serve as a communication channel between cells. Exosomal-microRNAs (miRNAs) are gaining wide attention in several pathophysiological conditions, and are considered as early diagnostic and therapeutic targets. Recently, exosomal-miRNAs have been identified as key players during obesity and co-existing risk elements, unraveling their pivotal role in the progression of obesity-induced pathophysiological conditions. In this review, the latest developments in the role of exosomal cargo, specifically miRNAs, in obesity are highlighted. Additionally, we discuss their potential significance as early biomarkers and potential therapeutic targets for diagnosing and managing obesity and related diseases.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"44 ","pages":"Article 100827"},"PeriodicalIF":2.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143882590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}