{"title":"microRNA转运至心脏线粒体的机制","authors":"Diego Quiroga , Rachel Daniel , Samarjit Das","doi":"10.1016/j.cophys.2025.100848","DOIUrl":null,"url":null,"abstract":"<div><div>MicroRNAs (miRNAs) are essential post-transcriptional regulators of gene expression, and accumulating evidence supports their presence and function within mitochondria. These mitochondrial microRNAs (MitomiRs) modulate key processes such as oxidative phosphorylation, ATP production, calcium homeostasis, and reactive oxygen species balance in cardiac tissue. Despite growing recognition of their importance, the mechanisms governing miRNA trafficking to mitochondria remain incompletely understood. This review explores the current knowledge on miRNA biogenesis, mitochondrial import pathways — including the roles of Argonaute 2 (AGO2), the Translocase of the Outer/Inner Mitochondrial Membrane (TOM/TIM) complexes, and Polynucleotide Phosphorylase (PNPase) — and the regulatory impact of specific MitomiRs, such as miR-181c, miR-210, miR-378, let-7b, and miR-1. Understanding how these molecules influence mitochondrial function provides insight into their therapeutic potential in cardiovascular disease.</div></div>","PeriodicalId":52156,"journal":{"name":"Current Opinion in Physiology","volume":"45 ","pages":"Article 100848"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of microRNA trafficking to mitochondria in the heart\",\"authors\":\"Diego Quiroga , Rachel Daniel , Samarjit Das\",\"doi\":\"10.1016/j.cophys.2025.100848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MicroRNAs (miRNAs) are essential post-transcriptional regulators of gene expression, and accumulating evidence supports their presence and function within mitochondria. These mitochondrial microRNAs (MitomiRs) modulate key processes such as oxidative phosphorylation, ATP production, calcium homeostasis, and reactive oxygen species balance in cardiac tissue. Despite growing recognition of their importance, the mechanisms governing miRNA trafficking to mitochondria remain incompletely understood. This review explores the current knowledge on miRNA biogenesis, mitochondrial import pathways — including the roles of Argonaute 2 (AGO2), the Translocase of the Outer/Inner Mitochondrial Membrane (TOM/TIM) complexes, and Polynucleotide Phosphorylase (PNPase) — and the regulatory impact of specific MitomiRs, such as miR-181c, miR-210, miR-378, let-7b, and miR-1. Understanding how these molecules influence mitochondrial function provides insight into their therapeutic potential in cardiovascular disease.</div></div>\",\"PeriodicalId\":52156,\"journal\":{\"name\":\"Current Opinion in Physiology\",\"volume\":\"45 \",\"pages\":\"Article 100848\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468867325000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Physiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468867325000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Mechanisms of microRNA trafficking to mitochondria in the heart
MicroRNAs (miRNAs) are essential post-transcriptional regulators of gene expression, and accumulating evidence supports their presence and function within mitochondria. These mitochondrial microRNAs (MitomiRs) modulate key processes such as oxidative phosphorylation, ATP production, calcium homeostasis, and reactive oxygen species balance in cardiac tissue. Despite growing recognition of their importance, the mechanisms governing miRNA trafficking to mitochondria remain incompletely understood. This review explores the current knowledge on miRNA biogenesis, mitochondrial import pathways — including the roles of Argonaute 2 (AGO2), the Translocase of the Outer/Inner Mitochondrial Membrane (TOM/TIM) complexes, and Polynucleotide Phosphorylase (PNPase) — and the regulatory impact of specific MitomiRs, such as miR-181c, miR-210, miR-378, let-7b, and miR-1. Understanding how these molecules influence mitochondrial function provides insight into their therapeutic potential in cardiovascular disease.