Journal of Modern Power Systems and Clean Energy最新文献

筛选
英文 中文
Distributionally Robust Scheduling for Benefit Allocation in Regional Integrated Energy System with Multiple Stakeholders 多利益相关者区域综合能源系统中利益分配的稳健调度方法
IF 5.7 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-29 DOI: 10.35833/MPCE.2023.000661
Qinglin Meng;Xiaolong Jin;Fengzhang Luo;Zhongguan Wang;Sheharyar Hussain
{"title":"Distributionally Robust Scheduling for Benefit Allocation in Regional Integrated Energy System with Multiple Stakeholders","authors":"Qinglin Meng;Xiaolong Jin;Fengzhang Luo;Zhongguan Wang;Sheharyar Hussain","doi":"10.35833/MPCE.2023.000661","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000661","url":null,"abstract":"A distributionally robust scheduling strategy is proposed to address the complex benefit allocation problem in regional integrated energy systems (RIESs) with multiple stakeholders. A two-level Stackelberg game model is established, with the RIES operator as the leader and the users as the followers. It considers the interests of the RIES operator and demand response users in energy trading. The leader optimizes time-of-use (TOU) energy prices to minimize costs while users formulate response plans based on prices. A two-stage distributionally robust game model with comprehensive norm constraints, which encompasses the two-level Stackelberg game model in the day-ahead scheduling stage, is constructed to manage wind power uncertainty. Karush-Kuhn-Tucker (KKT) conditions transform the two-level Stackelberg game model into a single-level robust optimization model, which is then solved using column and constraint generation (C&CG). Numerical results demonstrate the effectiveness of the proposed strategy in balancing stakeholders' interests and mitigating wind power risks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State Transition Modeling Method for Optimal Dispatching for Integrated Energy System Based on Cyber—Physical System 基于网络-物理系统的综合能源系统优化调度状态转换建模方法
IF 5.7 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-29 DOI: 10.35833/MPCE.2024.000090
Yi Yang;Peng Zhang;Can Wang;Zhuoli Zhao;Loi Lei Lai
{"title":"State Transition Modeling Method for Optimal Dispatching for Integrated Energy System Based on Cyber—Physical System","authors":"Yi Yang;Peng Zhang;Can Wang;Zhuoli Zhao;Loi Lei Lai","doi":"10.35833/MPCE.2024.000090","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000090","url":null,"abstract":"The traditional energy hub based model has difficulties in clearly describing the state transition and transition conditions of the energy unit in the integrated energy system (IES). Therefore, this study proposes a state transition modeling method for an IES based on a cyber-physical system (CPS) to optimize the state transition of energy unit in the IES. This method uses the physical, integration, and optimization layers as a three-layer modeling framework. The physical layer is used to describe the physical models of energy units in the IES. In the integration layer, the information flow is integrated into the physical model of energy unit in the IES to establish the state transition model, and the transition conditions between different states of the energy unit are given. The optimization layer aims to minimize the operating cost of the IES and enables the operating state of energy units to be transferred to the target state. Numerical simulations show that, compared with the traditional modeling method, the state transition modeling method based on CPS achieves the observability of the operating state of the energy unit and its state transition in the dispatching cycle, which obtains an optimal state of the energy unit and further reduces the system operating costs.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541888","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample Generation for Security Region Boundary Identification Based on Topological Features of Historical Operation Data 基于历史运行数据拓扑特征的安全区域边界识别样本生成
IF 5.7 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-28 DOI: 10.35833/MPCE.2023.000321
Xiaokang Wu;Wei Xu;Feng Xue
{"title":"Sample Generation for Security Region Boundary Identification Based on Topological Features of Historical Operation Data","authors":"Xiaokang Wu;Wei Xu;Feng Xue","doi":"10.35833/MPCE.2023.000321","DOIUrl":"10.35833/MPCE.2023.000321","url":null,"abstract":"Since the scale and uncertainty of the power system have been rapidly increasing, the computation efficiency of constructing the security region boundary (SRB) has become a prominent problem. Based on the topological features of historical operation data, a sample generation method for SRB identification is proposed to generate evenly distributed samples, which cover dominant security modes. The boundary sample pair (BSP) composed of a secure sample and an unsecure sample is defined to describe the feature of SRB. The resolution, sampling, and span indices are designed to evaluate the coverage degree of existing BSPs on the SRB and generate samples closer to the SRB. Based on the feature of flat distribution of BSPs over the SRB, the principal component analysis (PCA) is adopted to calculate the tangent vectors and normal vectors of SRB. Then, the sample distribution can be expanded along the tangent vector and corrected along the normal vector to cover different security modes. Finally, a sample set is randomly generated based on the IEEE standard example and another new sample set is generated by the proposed method. The results indicate that the new sample set is closer to the SRB and covers different security modes with a small calculation time cost.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10485267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-Term Residential Load Forecasting Based on $K-text{shape}$ Clustering and Domain Adversarial Transfer Network 基于 $K-text{shape}$ 聚类和领域对抗传输网络的短期居民负荷预测
IF 5.7 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-27 DOI: 10.35833/MPCE.2023.000646
Jizhong Zhu;Yuwang Miao;Hanjiang Dong;Shenglin Li;Ziyu Chen;Di Zhang
{"title":"Short-Term Residential Load Forecasting Based on $K-text{shape}$ Clustering and Domain Adversarial Transfer Network","authors":"Jizhong Zhu;Yuwang Miao;Hanjiang Dong;Shenglin Li;Ziyu Chen;Di Zhang","doi":"10.35833/MPCE.2023.000646","DOIUrl":"10.35833/MPCE.2023.000646","url":null,"abstract":"In recent years, the expansion of the power grid has led to a continuous increase in the number of consumers within the distribution network. However, due to the scarcity of historical data for these new consumers, it has become a complex challenge to accurately forecast their electricity demands through traditional forecasting methods. This paper proposes an innovative short-term residential load forecasting method that harnesses advanced clustering, deep learning, and transfer learning technologies to address this issue. To begin, this paper leverages the domain adversarial transfer network. It employs limited data as target domain data and more abundant data as source domain data, thus enabling the utilization of source domain insights for the forecasting task of the target domain. Moreover, a \u0000<tex>$boldsymbol{K}-mathbf{shape}$</tex>\u0000 clustering method is proposed, which effectively identifies source domain data that align optimally with the target domain, and enhances the forecasting accuracy. Subsequently, a composite architecture is devised, amalgamating attention mechanism, long short-term memory network, and seq2seq network. This composite structure is integrated into the domain adversarial transfer network, bolstering the performance of feature extractor and refining the forecasting capabilities. An illustrative analysis is conducted using the residential load dataset of the Independent System Operator to validate the proposed method empirically. In the case study, the relative mean square error of the proposed method is within 30 MW, and the mean absolute percentage error is within 2%. A significant improvement in accuracy, compared with other comparative experimental results, underscores the reliability of the proposed method. The findings unequivocally demonstrate that the proposed method advocated in this paper yields superior forecasting results compared with prevailing mainstream forecasting methods.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480328","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synchrophasor Measurement Method Based on Cascaded Infinite Impulse Response and Dual Finite Impulse Response Filters 基于级联无限脉冲响应和双有限脉冲响应滤波器的同步信号测量方法
IF 5.7 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-27 DOI: 10.35833/MPCE.2023.000824
Boyu Zhao;Hao Liu;Tianshu Bi;Sudi Xu
{"title":"Synchrophasor Measurement Method Based on Cascaded Infinite Impulse Response and Dual Finite Impulse Response Filters","authors":"Boyu Zhao;Hao Liu;Tianshu Bi;Sudi Xu","doi":"10.35833/MPCE.2023.000824","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000824","url":null,"abstract":"High-precision synchronized measurement data with short measurement latency are required for applications of phasor measurement units (PMUs). This paper proposes a synchrophasor measurement method based on cascaded infinite impulse response (IIR) and dual finite impulse response (FIR) filters, meeting the M-class and P-class requirements in the IEC/ IEEE 60255-118-1 standard. A low-group-delay IIR filter is designed to remove out-of-band interference components. Two FIR filters with different center frequencies are designed to filter out the fundamental negative frequency component and obtain synchrophasor estimates. The ratio of the amplitudes of the synchrophasor is used to calculate the frequency according to the one-to-one correspondence between the ratio of the amplitude frequency response of the FIR filters and the frequency. To shorten the response time introduced by IIR filter, a step identification and processing method based on the rate of change of frequency (RoCoF) is proposed and analyzed. The synchrophasor is accurately compensated based on the frequency and the frequency response of the IIR and FIR filters, achieving high-precision synchrophasor and frequency estimates with short measurement latency. Simulation and experiment tests demonstrate that the proposed method is superior to existing methods and can provide synchronized measurement data for M-class PMU applications with short measurement latency.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity 基于电池储能系统的虚拟输电解决方案提升输电能力
IF 6.3 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-25 DOI: 10.35833/MPCE.2023.000729
Matías Agüero;Jaime Peralta;Eugenio Quintana;Victor Velar;Anton Stepanov;Hossein Ashourian;Jean Mahseredjian;Roberto Cárdenas
{"title":"Virtual Transmission Solution Based on Battery Energy Storage Systems to Boost Transmission Capacity","authors":"Matías Agüero;Jaime Peralta;Eugenio Quintana;Victor Velar;Anton Stepanov;Hossein Ashourian;Jean Mahseredjian;Roberto Cárdenas","doi":"10.35833/MPCE.2023.000729","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000729","url":null,"abstract":"The increasing penetration of variable renewable energy (VRE) generation along with the decommissioning of conventional power plants in Chile, has raised several operational challenges in the Chilean National Power Grid (NPG), including transmission congestion and VRE curtailment. To mitigate these limitations, an innovative virtual transmission solution based on battery energy storage systems (BESSs), known as grid booster (GB), has been proposed to increase the capacity of the main 500 kV corridor of the NPG. This paper analyzes the dynamic performance of the GB using a wide-area electromagnetic transient (EMT) model of the NPG. The GB project, composed of two 500 MVA BESS units at each extreme of the 500 kV corridor, allows increasing the transmission capacity for 15 min during N-1 contingencies, overcoming transmission limitations under normal operation conditions while maintaining system stability during faults. The dynamic behavior of the GB is also analyzed to control power flow as well as voltage stability. The results show that the GB is an effective solution to allow greater penetration of VRE generation while maintaining system stability in the NPG.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Special Section on Battery Energy Storage Systems for Net-zero Power Systems and Markets 特邀编辑:零净电力系统和市场的电池储能系统专栏
IF 6.3 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-25 DOI: 10.35833/MPCE.2024.000243
Pierluigi Mancarella;Nikos Hatziargyriou;Chongqing Kang
{"title":"Guest Editorial: Special Section on Battery Energy Storage Systems for Net-zero Power Systems and Markets","authors":"Pierluigi Mancarella;Nikos Hatziargyriou;Chongqing Kang","doi":"10.35833/MPCE.2024.000243","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000243","url":null,"abstract":"Battery energy storage technologies have witnessed both dramatic cost reduction and technical evolution in recent years. This is leading to widespread deployment of battery energy storage systems (BESSs) worldwide, particularly to support operation of power grids with already deep penetration of renewables. Considering the development of new battery technologies with different power-to-energy ratios and for various engineering applications, BESSs could play a strategic role towards a net-zero energy future. New opportunities are emerging for BESSs to participate in several markets, provide different grid services, and perform “value stacking”, eventually allowing development of new business cases and improved BESS economics. BESS configurations that are “behind the meter”, “in front of the meter”, hybrid plants co-located with renewables, and so forth, are only some of the exciting propositions that are being seen in different countries and at different scales, from highly distributed (virtual power plants), to neighbourhood-level (community batteries), to utility scale.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478436","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems 基于门控递归单元的多尺度融合模型,用于提高电池储能系统的充电状态预测精度
IF 6.3 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-25 DOI: 10.35833/MPCE.2023.000726
Hao Liu;Fengwei Liang;Tianyu Hu;Jichao Hong;Huimin Ma
{"title":"Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems","authors":"Hao Liu;Fengwei Liang;Tianyu Hu;Jichao Hong;Huimin Ma","doi":"10.35833/MPCE.2023.000726","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000726","url":null,"abstract":"Accurate prediction of the state-of-charge (SOC) of battery energy storage system (BESS) is critical for its safety and lifespan in electric vehicles. To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction, this paper introduces a novel multi-scale fusion (MSF) model based on gated recurrent unit (GRU), which is specifically designed for complex multi-step SOC prediction in practical BESSs. Pearson correlation analysis is first employed to identify SOC-related parameters. These parameters are then input into a multi-layer GRU for point-wise feature extraction. Concurrently, the parameters undergo patching before entering a dual-stage multi-layer GRU, thus enabling the model to capture nuanced information across varying time intervals. Ultimately, by means of adaptive weight fusion and a fully connected network, multi-step SOC predictions are rendered. Following extensive validation over multiple days, it is illustrated that the proposed model achieves an absolute error of less than 1.5% in real-time SOC prediction.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478435","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Offering of Energy Storage in UK Day-Ahead Energy and Frequency Response Markets 在英国日前能源和频率响应市场中优化储能服务
IF 6.3 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-25 DOI: 10.35833/MPCE.2023.000737
Makedon Karasavvidis;Andreas Stratis;Dimitrios Papadaskalopoulos;Goran Strbac
{"title":"Optimal Offering of Energy Storage in UK Day-Ahead Energy and Frequency Response Markets","authors":"Makedon Karasavvidis;Andreas Stratis;Dimitrios Papadaskalopoulos;Goran Strbac","doi":"10.35833/MPCE.2023.000737","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000737","url":null,"abstract":"The offering strategy of energy storage in energy and frequency response (FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly uncertain. To this end, a novel optimal offering model is proposed for stand-alone price-taking storage participants, which accounts for recent FR market design developments in the UK, namely the trade of FR products in time blocks, and the mutual exclusivity among the multiple FR products. The model consists of a day-ahead stage, devising optimal offers under uncertainty, and a real-time stage, representing the storage operation after uncertainty is materialized. Furthermore, a concrete methodological framework is developed for comparing different approaches around the anticipation of uncertain FR utilization factors (determinis- one based on expected values, deterministic one based on worst-case values, stochastic one, and robust one), by providing four alternative formulations for the real-time stage of the proposed offering model, and carrying out an out-of-sample validation of the four model instances. Finally, case studies employing real data from UK energy and FR markets compare these four instances against achieved profits, FR delivery violations, and computational scalability.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478754","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Design of Hybrid Microgrid in Isolated Communities of Ecuador 厄瓜多尔偏远社区混合微电网的优化设计
IF 6.3 1区 工程技术
Journal of Modern Power Systems and Clean Energy Pub Date : 2024-03-25 DOI: 10.35833/MPCE.2023.000733
Luis A. Pesantes;Ruben Hidalgo-León;Johnny Rengifo;Miguel Torres;Jorge Aragundi;José Cordova-Garcia;Luis F. Ugarte
{"title":"Optimal Design of Hybrid Microgrid in Isolated Communities of Ecuador","authors":"Luis A. Pesantes;Ruben Hidalgo-León;Johnny Rengifo;Miguel Torres;Jorge Aragundi;José Cordova-Garcia;Luis F. Ugarte","doi":"10.35833/MPCE.2023.000733","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000733","url":null,"abstract":"In rural territories, the communities use energy sources based on fossil fuels to supply themselves with electricity, which may address two main problems: greenhouse gas emissions and high fuel prices. Hence, there is an opportunity to include renewable resources in the energy mix. This paper develops an optimization model to determine the optimal sizing, the total annual investment cost in renewable generation, and other operating costs of the components of a hybrid microgrid. By running a k-means clustering algorithm on a meteorological dataset of the community under study, the hourly representative values become input parameters in the proposed optimization model. The method for the optimal design of hybrid microgrid is analyzed in six operating scenarios considering: (1) 24-hour continuous power supply; (2) load shedding percentage; (3) disel power generator (genset) curtailment; (4) the worst meteorological conditions; (5) the use of renewable energy sources including battery energy storage systems (BESSs); and (6) the use of genset. A mathematical programming language (AMPL) tool is used to find solutions of the proposed optimization model. Results show that the total costs of microgrid in the scenarios that cover 100% of the load demand (without considering the scenario with 100% renewables) increase by over 16% compared with the scenario with genset operation limitation. For the designs with power supply restrictions, the total cost of microgrid in the scenario with load shedding is reduced by over 27% compared with that without load shedding.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478755","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信