Weihang Yan;Vahan Gevorgian;Przemyslaw Koralewicz;S M Shafiul Alam;Emanuel Mendiola
{"title":"Regional Power System Black Start with Run-of-River Hydropower Plant and Battery Energy Storage","authors":"Weihang Yan;Vahan Gevorgian;Przemyslaw Koralewicz;S M Shafiul Alam;Emanuel Mendiola","doi":"10.35833/MPCE.2023.000730","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000730","url":null,"abstract":"Battery energy storage systems (BESSs) are an important asset for power systems with high integration levels of renewable energy, and they can be controlled to provide various critical services to the power grid. This paper presents the real-world experience of using a megawatt-scale BESS with grid-following (GFL) and grid-forming (GFM) controls and a run-of-river (ROR) hydropower plant to restore a regional power system. To demonstrate this, we carry out power-hardware-in-the-loop experiments integrating an actual GFL- or GFM-controlled BESS and a load bank. Both the simulation and experimental results presented in this paper show the different roles of GFL- or GFM-controlled BESS in power system black starts. The results provide further insight for system operators on how GFL- or GFM-controlled BESS can enhance grid stability and how an ROR hydropower plant can be converted into a black-start-capable unit with the support of a small-capacity BESS. The results show that an ROR hydropower plant combined with a BESS has the potential of becoming one of enabling elements to perform bottom-up black-start schemes as opposed to conventional bottom-down method, thus enhancing the system resiliency and robustness.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1596-1604"},"PeriodicalIF":5.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599368","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuheng Wei;Zaijun Wu;Junjun Xu;Yanzhe Cheng;Qinran Hu
{"title":"Security Risk Assessment and Risk-oriented Defense Resource Allocation for Cyber-physical Distribution Networks Against Coordinated Cyber Attacks","authors":"Shuheng Wei;Zaijun Wu;Junjun Xu;Yanzhe Cheng;Qinran Hu","doi":"10.35833/MPCE.2024.000288","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000288","url":null,"abstract":"With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components, power distribution networks are subject to miscellaneous security risks induced by malicious attackers. To address the issue, this paper proposes a security risk assessment method and a risk-oriented defense resource allocation strategy for cyber-physical distribution networks (CPDNs) against coordinated cyber attacks. First, an attack graph-based CPDN architecture is constructed, and representative cyber-attack paths are drawn considering the CPDN topology and the risk propagation process. The probability of a successful coordinated cyber attack and incurred security risks are quantitatively assessed based on the absorbing Markov chain model and National Institute of Standards and Technology (NIST) standard. Next, a risk-oriented defense resource allocation strategy is proposed for CPDNs in different attack scenarios. The trade-off between security risk and limited resource budget is formulated as a multi-objective optimization (MOO) problem, which is solved by an efficient optimal Pareto solution generation approach. By employing a generational distance metric, the optimal solution is prioritized from the optimal Pareto set of the MOO and leveraged for subsequent atomic allocation of defense resources. Several case studies on a modified IEEE 123- node test feeder substantiate the efficacy of the proposed security risk assessment method and risk-oriented defense resource allocation strategy.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"312-324"},"PeriodicalIF":5.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Flow Calculation for VSC-Based AC/DC Hybrid Systems Based on Fast and Flexible Holomorphic Embedding","authors":"Peichuan Tian;Yexuan Jin;Ning Xie;Chengmin Wang;Chunyi Huang","doi":"10.35833/MPCE.2024.000185","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000185","url":null,"abstract":"The power flow (PF) calculation for AC/DC hybrid systems based on voltage source converter (VSC) plays a crucial role in the operational analysis of the new energy system. The fast and flexible holomorphic embedding (FFHE) PF method, with its non-iterative format founded on complex analysis theory, exhibits superior numerical performance compared with traditional iterative methods. This paper aims to extend the FF-HE method to the PF problem in the VSC-based AC/DC hybrid system. To form the AC/DC FFHE PF method, an AC/DC FF-HE model with its solution scheme and a sequential AC/DC PF calculation framework are proposed. The AC/DC FFHE model is established with a more flexible form to incorporate multiple control strategies of VSC while preserving the constructive and deterministic properties of original FFHE to reliably obtain operable AC/DC solutions from various initializations. A solution scheme for the proposed model is provided with specific recursive solution processes and accelerated Padé approximant. To achieve the overall convergence of AC/DC PF, the AC/DC FF-HE model is integrated into the sequential calculation framework with well-designed data exchange and control mode switching mechanisms. The proposed method demonstrates significant efficiency improvements, especially in handling scenarios involving control mode switching and multiple recalculations. In numerical tests, the superiority of the proposed method is confirmed through comparisons of accuracy and efficiency with existing methods, as well as the impact analyses of different initializations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1370-1382"},"PeriodicalIF":5.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587187","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mid- and High-Frequency Resonance Characteristics and Suppression Strategies of VSC-UHVDC for Large-Scale Renewable Energy Transmission","authors":"Junjie Feng;Wang Xiang;Jinyu Wen;Chuang Fu;Qingming Xin;Xiaobin Zhao;Changyue Zou;Biyue Huang;Zhiyong Yuan","doi":"10.35833/MPCE.2024.000301","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000301","url":null,"abstract":"Mid- and high-frequency resonance (MHFR) is highly likely to occur at the sending end of voltage source converter-based ultra-high voltage direct current (VSC-UHVDC) for large-scale renewable energy transmission. It is of great importance to investigate the resonance characteristics and the corresponding suppression strategies. Firstly, this paper introduces the overall control scheme of VSC-UHVDC for large-scale renewable energy transmission. Then, the impedance models of VSC under grid-forming control with AC voltage coordinated control are established. The mid- and high-frequency impedance characteristics of VSC-UHVDC are analyzed. The key factors affecting the impedance characteristics have been revealed, including the AC voltage control, the voltage feedforward, the inner current loop, the positive-sequence and negative-sequence independent control (PSNSIC), and the control delay. The MHFR characteristics at the sending-end system are analyzed in the whole operation process, including the black start and the normal power transmission operation. An integrated control scheme is proposed to address the MHFR problems. Finally, extensive case studies are conducted on a planned VSC-UHVDC project to verify the theoretical analysis.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2058-2070"},"PeriodicalIF":5.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Wang;Cuo Zhang;Xingying Chen;Yan Xu;Kun Yu;Haochen Hua;Zhao Yang Dong
{"title":"Price-based Demand Response Supported Three-stage Hierarchically Coordinated Voltage Control for Microgrids","authors":"Bo Wang;Cuo Zhang;Xingying Chen;Yan Xu;Kun Yu;Haochen Hua;Zhao Yang Dong","doi":"10.35833/MPCE.2024.000263","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000263","url":null,"abstract":"Photovoltaic (PV) inverter, as a promising voltage/var control (VVC) resource, can supply flexible reactive power to reduce microgrid power loss and regulate bus voltage. Mean-while, active power plays a significant role in microgrid voltage profile. Price-based demand response (PBDR) can shift load demand via determining time-varying prices, which can be regarded as an effective means for active power shifting. However, due to the different characteristics, PBDR and inverter-based VVC lack systematic coordination. Thus, this paper proposes a PBDR-supported three-stage hierarchically coordinated voltage control method, including day-ahead PBDR price scheduling, hour-ahead reactive power dispatch of PV inverters, and real-time local droop control of PV inverters. Considering their mutual influence, a stochastic optimization method is utilized to centrally or hierarchically coordinate adjacent two stages. To solve the bilinear constraints of droop control function, the problem is reformulated into a second-order cone programming relaxation model. Then, the concave constraints are convexified, forming a penalty convex-concave model for feasible solution recovery. Lastly, a convex-concave procedure-based solution algorithm is proposed to iteratively solve the penalty model. The proposed method is tested on 33-bus and IEEE 123-bus distribution networks and compared with other methods. The results verify the high efficiency of the proposed method to achieve power loss reduction and voltage regulation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"338-350"},"PeriodicalIF":5.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-Stage Model Predictive Control Based Reduced Model Framework for Voltage Control in Active Distribution Networks","authors":"Mudaser Rahman Dar;Sanjib Ganguly","doi":"10.35833/MPCE.2024.000394","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000394","url":null,"abstract":"The large-scale penetration of photovoltaic (PV) units and controllable loads such as electric vehicles (EVs) render the distribution networks prone to frequent, uncertain, and simultaneous over/under voltages. The coordinated control of devices such as on-load tap changer (OLTC), PV inverters, and EV chargers seem efficient in regulating the distribution network voltage within normal operation limits. However, the need for measuring infrastructure throughout the distribution network and communication setup to all control devices makes it practically and economically difficult. Furthermore, for large networks, the large measurement dataset of the network and distributed control resources increase the computational complexity and the response time. This paper proposes a voltage control strategy based on dual-stage model predictive control by coordinating devices such as OLTC and controllable PVs and EV charging stations. A minimum set of available control resources is identified to establish the voltage control in the network with reduced communication and minimum measuring infrastructure, using a reduced model framework. Simulations are performed on 33-bus distribution network and the modified IEEE 123-bus distribution network to validate the efficacy of the proposed control strategy.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1880-1892"},"PeriodicalIF":5.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Salles-Mardones;Alex Flores-Maradiaga;Rodrigo Barraza;Mohamed A. Ahmed
{"title":"Sensitivity Analysis of Peer-to-peer Photovoltaic Energy Trading in a Community Microgrid in Chile","authors":"Javier Salles-Mardones;Alex Flores-Maradiaga;Rodrigo Barraza;Mohamed A. Ahmed","doi":"10.35833/MPCE.2023.000678","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000678","url":null,"abstract":"Nowadays, public policies in Chile are geared towards the promotion of distributed energy resources (DERs) such as distributed photovoltaic (PV) systems. However, the prevailing socioeconomic context and the lack of incentive to invest in DERs have posed a challenge to achieving the established goals in the coming years. This paper develops a three-entity architecture model and decision-making algorithms for peer-to-peer (P2P) PV energy trading. It seeks to conduct a sensitivity analysis of a P2P PV energy trading system in a community microgrid, to assess the potential benefits for local communities and to encourage the development of new local public policies aimed at enhancing the profitability of DERs. Various scenarios are compared, both with and without P2P market, considering residential customers (RCs), encompassing both consumers and prosumers with PV systems, with or without battery energy storage systems (BESSs), an aggregator (AG), and utility grid (UG). Daily energy and economic transactions are examined with the aim of reducing the annual electricity bills for each RC, enhancing the profitability of DERs for prosumers, increasing incomes for the AG, and exploring potential benefits for the UG. The load profiles and meteorological data are collected from publicly available databases, and a novel electricity pricing scheme is proposed based on current rates offered by the local UG. The results demonstrate that the P2P market could lead to a reduction in the annual electricity bills by as much as 1.76% for consumers, an increase in annual income of up to 149% for prosumers, and a reduction in the payback period for their DERs by up to 0.4 years. This paper contributes to improving the investment in DER projects and provides a guide for extending the work to different regions of Chile and global emerging economies with DER potential.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1993-2005"},"PeriodicalIF":5.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568518","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochi Ding;Xinwei Shen;Qiuwei Wu;Liming Wang;Dechang Yang
{"title":"Smart Switch Configuration and Reliability Assessment Method for Electrical Collector Systems in Offshore Wind Farms","authors":"Xiaochi Ding;Xinwei Shen;Qiuwei Wu;Liming Wang;Dechang Yang","doi":"10.35833/MPCE.2024.000058","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000058","url":null,"abstract":"With the rapid expansion of offshore wind farms (OWFs) in remote regions, the study of highly reliable electrical collector systems (ECSs) has become increasingly important. Post-fault network recovery is considered as an effective measure of reliability enhancement. In this paper, we propose a smart switch configuration that facilitates network recovery, making it well-suited for ECSs operating in harsh environments. To accommodate the increased complexity of ECSs, a novel reliability assessment (RA) method considering detailed switch configuration is devised. This method effectively identifies the minimum outage propagation areas and incorporates post-fault network recovery strategies. The optimal normal operating state and network reconfiguration strategies that maximize ECS reliability can be obtained after optimization. Case studies on real-life OWFs validate the effectiveness and superiority of the proposed RA method compared with the traditional sequential Monte-Carlo simulation method. Moreover, numerical tests demonstrate that the proposed switch configuration, in conjunction with proper topology and network recovery, achieves the highest benefits across a wide range of operating conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1773-1785"},"PeriodicalIF":5.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Nie;Jinghan He;Meng Li;Huiyuan Zhang;Keao Chen
{"title":"Frequency-Dependent Parameter Identification for Improved Dynamic State Estimation Based Protection Based on Characteristic Signal Injection of Half-Bridge MMC in Flexible DC Grids","authors":"Ming Nie;Jinghan He;Meng Li;Huiyuan Zhang;Keao Chen","doi":"10.35833/MPCE.2023.000800","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000800","url":null,"abstract":"In flexible DC grids, the rapid rise of fault current requires that the line protection must complete the fault identification within a few milliseconds. Dynamic state estimation based protection (DSEBP) provides a new idea for flexible DC line protection with good performance. However, the operating frequency in the DC grid is 0 Hz. When the DC grid is operating normally, it is difficult to identify the line parameters online to improve the performance of the protection method. This paper proposes a method to identify the frequency-dependent parameters of flexible DC grids based on the characteristic signal injection of half-bridge modular multilevel converter (HB-MMC). The characteristic signal is extracted by the Prony algorithm to calculate the line parameter under different frequencies. Afterwards, the number and position of residues and poles of frequency-dependent parameters are determined using the vector fitting method. Finally, an improved DSEBP is proposed. The simulation shows that the frequency-dependent parameters obtained by the proposed parameter identification method can be used in the improved DSEBP normally, and the identified parameters have better precision.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1823-1836"},"PeriodicalIF":5.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Service Restoration of Distribution System Considering Novel Battery Charging and Swapping Station, Repair Crews, and Network Reconfigurations","authors":"Xianqiu Zhao;Qingshan Xu;Yongbiao Yang","doi":"10.35833/MPCE.2024.000010","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000010","url":null,"abstract":"With the integration of wind power, photovoltaic power, gas turbine, and energy storage, the novel battery charging and swapping station (NBCSS) possesses significant operational flexibility, which can aid in the service restoration of distribution system (DS) during power outages caused by extreme events. This paper presents an integrated optimization model for DS restoration that considers NBCSS, repair crews, and network reconfigurations simultaneously. The objective of this model is to maximize the restored load while minimizing generation costs. To address the uncertainties associated with renewable energies, a two-stage stochastic optimization framework is employed. Additionally, copula theory is also applied to capture the correlation between the output of adjacent renewable energies. The conditional value-at-risk (CVaR) measure is further incorporated into the objective function to account for risk aversion. Subsequently, the proposed optimization model is transformed into a mixed-integer linear programming (MILP) problem. This transformation allows for tractable solutions using commercial solvers such as Gurobi. Finally, case studies are conducted on the modified IEEE 33-bus and 69-bus DSs. The results illustrate that the proposed method not only restores a greater load but also effectively mitigates uncertainty risks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1905-1917"},"PeriodicalIF":5.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554989","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}