{"title":"Power Switching Based on Trajectory Planning and Sliding Mode Control for Solid Oxide Fuel Cell Systems","authors":"Zhen Wang;Guoqiang Liu;Xingbo Liu;Jie Wang;Zhiyang Jin;Xiaowei Fu;Zhuo Wang;Bing Jin;Zhonghua Deng;Xi Li","doi":"10.35833/MPCE.2024.000284","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000284","url":null,"abstract":"To improve the safety of the solid oxide fuel cell (SOFC) systems and avoid the generation of large amounts of pollutants during power switching, this paper designs a power switching strategy based on trajectory planning and sliding mode control (TP-SMC). The design elements of the power switching strategy are proposed through simulation analysis at first. Then, based on the gas transmission delay time and the change of gas flow obtained from testing, trajectory planning (TP) is implemented. Compared with other power switching strategies, it has been proven that the power switching strategy based on TP has significantly better control performance. Furthermore, considering the shortcomings and problems of TP in practical application, this paper introduces sliding mode control (SMC) on the basis of TP to improve the power switching strategy. The final simulation results also prove that the TP-SMC can effectively suppress the impact of uncertainty in gas flow and gas transmission delay time. Compared with TP, TP-SMC can ensure that under uncertain conditions, the SOFC system does not experience fuel starvation and temperature exceeding limit during power switching. Meanwhile, the NOx emissions are also within the normal and acceptable range. This paper can guide the power switching process of the actual SOFC systems to avoid safety issues and excessive generation of NOx, which is very helpful for improving the performance and service life of the SOFC systems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1968-1979"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resonance Assessment of Large-scale Wind Park Connected to Primary Distribution Network","authors":"Andrés Argüello;Ricardo Torquato;Walmir Freitas","doi":"10.35833/MPCE.2024.000127","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000127","url":null,"abstract":"On-shore wind parks are typically connected to the high-voltage (HV) transmission system through a bulk transformer. However, wind generators may be connected directly at a medium-voltage (MV) level, such as a utility-owned primary distribution network, if the network is capable of sustaining the power flow and ensuring adequate power quality for its users. This paper presents the findings of a comprehensive study on the management of resonance in a utility-owned wind park in Costa Rica. The wind park is connected directly to the MV primary distribution network and has no shunt capacitor for power factor correction. The results demonstrate that such configuration has a higher immunity to resonances, as the total grid equivalent impedance perceived by the wind park is typically dominated by the absent HV/MV transformer and shunt capacitor bank. Moreover, the capacitance provided by the underground feeders of the wind park did not result in natural oscillation frequencies in the range of typical harmonic distortions observed in MV distribution networks that violated power quality standards.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"289-299"},"PeriodicalIF":5.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara
{"title":"DistFlow Safe Reinforcement Learning Algorithm for Voltage Magnitude Regulation in Distribution Networks","authors":"Shengren Hou;Aihui Fu;Edgar Mauricio Salazar Duque;Peter Palensky;Qixin Chen;Pedro P. Vergara","doi":"10.35833/MPCE.2024.000253","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000253","url":null,"abstract":"The integration of distributed energy resources (DERs) has escalated the challenge of voltage magnitude regulation in distribution networks. Model-based approaches, which rely on complex sequential mathematical formulations, cannot meet the real-time demand. Deep reinforcement learning (DRL) offers an alternative by utilizing offline training with distribution network simulators and then executing online without computation. However, DRL algorithms fail to enforce voltage magnitude constraints during training and testing, potentially leading to serious operational violations. To tackle these challenges, we introduce a novel safe-guaranteed reinforcement learning algorithm, the DistFlow safe reinforcement learning (DF-SRL), designed specifically for real-time voltage magnitude regulation in distribution networks. The DF-SRL algorithm incorporates a DistFlow linearization to construct an expert-knowledge-based safety layer. Subsequently, the DF-SRL algorithm overlays this safety layer on top of the agent policy, recalibrating unsafe actions to safe domains through a quadratic programming formulation. Simulation results show the DF-SRL algorithm consistently ensures voltage magnitude constraints during training and real-time operation (test) phases, achieving faster convergence and higher performance, which differentiates it apart from (safe) DRL benchmark algorithms.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"300-311"},"PeriodicalIF":5.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation-Based Approach to Assessing Short-Term Power Variations of PV Power Plants Under Cloud Conditions","authors":"Eric Bernard Dilger;Ricardo Vasques de Oliveira","doi":"10.35833/MPCE.2024.000460","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000460","url":null,"abstract":"The output power variability of photovoltaic (PV) power plants (PVPPs) is one of the major challenges for the operation and control of power systems. The short-term power variations, mainly caused by cloud movements, affect voltage magnitude and frequency, which may degrade power quality and power system reliability. Comprehensive analyses of these power variations are crucial to formulate novel control approaches and assist power system operators in the operation and control of power systems. Thus, this paper proposes a simulation-based approach to assessing short-term power variations caused by clouds in PV power plants. A comprehensive assessment of the short-term power variations in a PV power plant operating under cloud conditions is another contribution of this paper. The performed analysis evaluates the individual impact of multiple weather condition parameters on the magnitude and ramp rate of the power variations. The simulation-based approach synthesizes the solar irradiance time series using three-dimensional fractal surfaces. The proposed assessment approach has shown that the PVPP nominal power, timescale, cloud coverage level, wind speed, period of the day, and shadow intensity level significantly affect the characteristics of the power variations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1837-1848"},"PeriodicalIF":5.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luka V. Strezoski;Nikola G. Simic;Kenneth A. Loparo
{"title":"A Robust Short-circuit Calculation Method for Islanded, Grid-connected, and Utility Microgrids","authors":"Luka V. Strezoski;Nikola G. Simic;Kenneth A. Loparo","doi":"10.35833/MPCE.2023.001041","DOIUrl":"https://doi.org/10.35833/MPCE.2023.001041","url":null,"abstract":"In this paper, a robust method for quantifying the impact of short-circuit faults on microgrids is proposed. Microgrids can operate in both islanded (grid-forming) and grid-connected (grid-following) modes, and the ownership and responsibility for the microgrid operation can vary significantly from distribution system operators (DSOs) to third-party microgrid operators. This necessitates the development of a robust short-circuit calculation (SCC) method that can provide accurate results for all the possible microgrid topologies, operational modes, and ownership models. Unlike previously developed SCC methods for microgrids, the SCC method proposed in this paper provides highly accurate results for all possible microgrid topologies: islanded microgrid, grid-connected microgrid, and utility microgrid as a part of a larger distribution grid. In addition, the proposed SCC method solves the short-circuit faults of any complexity, with the same simplicity. The proposed SCC method is tested on a complete model of a real-life microgrid on the Case Western Reserve University campus, operating in both islanded and grid-connected modes. The computational results show the advantages of the proposed SCC method in comparison to the previous ones for microgrids, regarding the robustness (ability to solve complex short-circuit faults with an arbitrary number of faulted buses and phases that affect a microgrid of any topology), as well as the accuracy of the results.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"325-337"},"PeriodicalIF":5.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10648971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transmission Expansion Planning for Renewable-Energy-Dominated Power Grids Considering Climate Impact","authors":"Jin Lu;Xingpeng Li","doi":"10.35833/MPCE.2023.000990","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000990","url":null,"abstract":"As renewable energy is becoming the major resource in future power grids, the weather and climate can have a higher impact on grid reliability. Transmission expansion planning (TEP) has the potential to reinforce the power transfer capability of a transmission network for climate-impacted power grids. In this paper, we propose a systematic TEP procedure for renewable-energy-dominated power grids considering climate impact (CI). Particularly, this paper develops an improved model for TEP considering climate impact (TEP-CI) and evaluates the reliability of power grid with the obtained transmission investment plan. Firstly, we create climate-impacted spatio-temporal future power grid data to facilitate the study of TEP-CI, which include the future climate-dependent renewable power generation as well as the dynamic line rating profiles of the Texas 123-bus backbone transmission (TX-123BT) system. Secondly, the TEP-CI model is proposed, which considers the variation in renewable power generation and dynamic line rating, and the investment plan for future TX-123BT system is obtained. Thirdly, a customized security-constrained unit commitment (SCUC) is presented specifically for climate-impacted power grids. The reliability of future power grid in various investment scenarios is analyzed based on the daily operation conditions from SCUC simulations. The whole procedure presented in this paper enables numerical studies on power grid planning considering climate impact. It can also serve as a benchmark for other studies of the TEP-CI model and its performance evaluation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1737-1748"},"PeriodicalIF":5.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630585","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Dimensional Steady-State Security Region Boundary Approximation in Power Systems Using Feature Non-Linear Converter and Improved Oblique Decision Tree","authors":"Yuxin Dai;Jun Zhang;Peidong Xu;Tianlu Gao;David Wenzhong Gao","doi":"10.35833/MPCE.2024.000188","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000188","url":null,"abstract":"The steady-state security region (SSR) offers robust support for the security assessment and control of new power systems with high uncertainty and fluctuation. However, accurately solving the steady-state security region boundary (SS-RB), which is high-dimensional, non-convex, and non-linear, presents a significant challenge. To address this problem, this paper proposes a method for approximating the SSRB in power systems using the feature non-linear converter and improved oblique decision tree. First, to better characterize the SSRB, boundary samples are generated using the proposed sampling method. These samples are distributed within a limited distance near the SSRB. Then, to handle the high-dimensionality, non-convexity and non-linearity of the SSRB, boundary samples are converted from the original power injection space to a new feature space using the designed feature non-linear converter. Consequently, in this feature space, boundary samples are linearly separated using the proposed information gain rate based weighted oblique decision tree. Finally, the effectiveness and generality of the proposed sampling method are verified on the WECC 3-machine 9-bus system and IEEE 118-bus system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1786-1797"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bi-Level Robust Clearing Framework of Integrated Electricity and Gas Market Considering Robust Bidding of Smart Energy Hubs","authors":"Yanqiu Hou;Minglei Bao;Yi Ding","doi":"10.35833/MPCE.2024.000093","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000093","url":null,"abstract":"With the implementation of the integrated electricity and gas market (IEGM), the smart energy hubs (SEHs) tend to participate in the market clearing for the optimization of the energy purchase portfolio. Meanwhile, the renewable energy is mushrooming at different scales of energy systems, which can introduce utility-level and distribution-level uncertainties to the operation of the IEGM and SEHs, respectively. Considering the impacts of divergent uncertainties, there exist complicated inter-actions between the IEGM clearing and the robust bidding of SEHs. The lack of consideration of such interactions may lead to inaccurate modeling of the IEGM clearing and cause potential market inefficiency. To handle this, a bi-level robust clearing framework of the IEGM considering the robust bidding of SEHs is proposed, which simultaneously considers the impacts of utility-level and distribution-level uncertainties. The proposed framework is partitioned into two levels. The upper level is the robust clearing mechanism of the IEGM. At this level, the uncertainty locational marginal electricity and gas prices are derived considering the utility-level uncertainties and the uncertainty-based bidding of SEHs. Given the price signals deduced in the upper level, the lower-level robust bidding of the SEH seeks the optimal bidding strategies while hedging against distribution-level uncertainties. To address the proposed framework, an effective algorithm combining column-and-constraint generation (C&CG) algorithm with the best-response decomposition (BRD) algorithm is formulated. The devised algorithm can efficiently solve the individual robust optimization model and coordinate the interaction of two levels. Numerical experiments are carried out to verify the effectiveness of the proposed framework. Moreover, the impacts of uncertainties on the market clearing results along with the optimal biddings of SEHs are further demonstrated within the proposed framework.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"351-364"},"PeriodicalIF":5.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated Load and Energy Management in Active Distribution Networks Featuring Prosumers Based on PV and Energy Storage Systems","authors":"Alireza Alamolhoda;Reza Ebrahimi;Mahmoud Samiei Moghaddam;Mahmoud Ghanbari","doi":"10.35833/MPCE.2023.000944","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000944","url":null,"abstract":"This study introduces a mixed-integer second-order conic programming (MISOCP) model for the effective management of load and energy in active distribution networks featuring prosumers. A multi-objective function is devised to concurrently minimize various costs, including prosumer electricity costs, network energy loss costs, load shedding costs, and costs associated with renewable energy resource outages. The methodology involves determining optimal active power adjustment points for photovoltaic (PV) resources and integrated energy storage systems (ESSs) within network buildings, in conjunction with a demand-side management program. To achieve the optimal solution for the proposed MISOCP model, a robust hybrid algorithm is presented, integrating the modified particle swarm optimization (MPSO) algorithm and the genetic algorithm (GA). This algorithm demonstrates a heightened capability for efficiently converging on challenging problems. The proposed model is evaluated using a distribution network comprising 33 buses, a practical distribution network, and a distribution network comprising 118 buses. Through comprehensive simulations in diverse cases, the results highlight the innovative contributions of the model. Specifically, it achieves a noteworthy reduction of 26.2% in energy losses and a 17.72% decrease in voltage deviation. Additionally, the model proves effective in augmenting prosumer electricity sales, showcasing its potential to improve the overall efficiency and sustainability of active distribution networks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1869-1879"},"PeriodicalIF":5.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10608102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intelligent Power Equipment for Autonomous Situational Awareness and Active Operation and Maintenance","authors":"Shice Zhao;Hongshan Zhao","doi":"10.35833/MPCE.2023.000697","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000697","url":null,"abstract":"The rapid development of the power system requires high reliability and real-time situational awareness of power equipment. The current agent-based condition-monitoring perception mode is not suitable for widely distributed power equipment due to the potential of single-point failure and high communication and data costs. Therefore, the technical development path of the power equipment perception mode is analyzed based on the development trend of the future power system. The concept of intelligent power equipment (IPE) is introduced, which combines online sensing, data mining, remote communication, and primary and secondary fusion technologies to develop an intelligent object that can realize autonomous situational awareness. IPE can actively interact with the control center and operation and maintenance (O&M) personnel according to its situation. This gives the power company an efficient and comprehensive perception of the equipment. Then, based on the actual situation of the power grid and emerging technology research directions, the challenges faced by each key technology supporting IPE and the corresponding technology enhancement solutions are presented. In addition, the O&M method applicable to IPE is discussed, which achieves proactive maintenance and prognosis management through autonomous equipment perception. Finally, the feasibility and effectiveness of IPE are verified by the performance of current IPE applications in an actual power grid.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2081-2090"},"PeriodicalIF":5.7,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}