Weiye Diao;Ao Liu;Jun Mei;Linyuan Wang;Guanghua Wang;Fujin Deng
{"title":"Synchronous Voltage Reconstruction of VSC-HVDC Systems Under Weak Grid Conditions","authors":"Weiye Diao;Ao Liu;Jun Mei;Linyuan Wang;Guanghua Wang;Fujin Deng","doi":"10.35833/MPCE.2024.000650","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000650","url":null,"abstract":"Under weak grid conditions, grid impedance is coupled with a control system for voltage source converter based high-voltage direct current (VSC-HVDC) systems, resulting in decreased synchronization stability. Unfortunately, most studies are based on the assumption that impedance ratio <tex>$(R/X)$</tex> is sufficiently small to ignore the effects of grid impedance. In this study, we establish a dynamic coupling model that includes grid impedance and control loops, revealing the influence mechanism of <tex>$R/X$</tex> on synchronization stability from a physical perspective. We also quantify the stability range of <tex>$R/X$</tex> in the static analysis model and introduce a sensitivity factor to measure its effect on voltage stability. Additionally, we utilize a dynamic analysis model to evaluate power angle convergence, proposing a corresponding stability criterion. We then present a method of synchronous voltage reconstruction aimed at enhancing the grid strength. Theoretical analysis shows that this method can effectively mitigate the effects of coupling between grid impedance and the controller under weak grid conditions, ensuring stable operation even under extremely weak grid conditions. Experiments validate the accuracy and effectiveness of the analysis and method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"1040-1051"},"PeriodicalIF":5.7,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10981584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144185827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Preventive Generation Rescheduling for Improving Small- and Large-Disturbance Rotor Angle Stabilities of Power Systems Considering Wind Power Uncertainty","authors":"Heling Yuan;Yan Xu","doi":"10.35833/MPCE.2024.000853","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000853","url":null,"abstract":"The widespread penetration of wind power has introduced challenges in managing the rotor angle stability characteristics of the power system, affecting both small- and large-disturbance rotor angle stabilities due to its uncertain steady-state power output and inverter-based grid interfacing. Traditionally, the two stability criteria are separately analyzed and improved via preventive control, e.g., generation rescheduling. However, they may have conflicting relationship during the preventive control optimization. Therefore, this paper firstly integrates both small- and large-disturbance rotor angle stabilities and proposes an optimization model for preventive generation rescheduling to simultaneously improve them while considering wind power uncertainty. The stability constraints are linearized using trajectory sensitivity analysis, while the wind power fluctuation is represented by employing a scenario-based Taguchi's orthogonal array testing (TOAT) method. An iterative solution method is proposed to efficiently solve the optimization model. The proposed optimization model is established on the New England 10-machine 39-bus system and a large Nordic system, demonstrating its robustness and effectiveness in addressing wind power fluctuations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1568-1579"},"PeriodicalIF":6.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oscillation Stability Control Based on Equipment-Level and Farm-Level Cooperative Optimization for Power System Connected with Direct-Drive PMSG-Based Wind Farms","authors":"Jing Ma;Yawen Deng;Honglu Xu;Yufeng Zhao","doi":"10.35833/MPCE.2024.001021","DOIUrl":"https://doi.org/10.35833/MPCE.2024.001021","url":null,"abstract":"Existing sub-/super-synchronous oscillation stability control methods are primarily focused on specific operating conditions at discrete frequencies, limiting their adaptation to varying oscillation scenarios in the power system connected with direct-drive permanent magnet synchronous generator (PMSG)-based wind farms. Based on supplementary dissipation compensation, this paper proposes an oscillation stability control method incorporating equipment-level and farm-level cooperative optimization to enhance the system-level stability. First, the effects of dynamic self-dissipation and dynamic coupled dissipation on system stability are analyzed, establishing the foundational principle of supplementary dissipation compensation. Subsequently, the optimal locations for supplementary dissipation compensation are identified based on critical control designed to enhance the dynamic self-dissipation effect and suppress the dynamic coupled dissipation effect. Furthermore, by considering energy requirements under the combined wind farm-grid interaction and inter-PMSG interactions and balancing the wind farm-grid interaction dissipation energy with inter-PMSG interaction dissipation energy distribution, an equipment-level control parameter optimization algorithm and a farm-level power cooperative optimization algorithm are established. Finally, the simulation results demonstrate that dynamic coupled dissipation constitutes the root cause of oscillation inception and progression. Through equipment-level and farm-level cooperative optimization, the proposed method can reliably compensate dynamic dissipation energy, while adapting to the variation of oscillation frequency and the oscillation scenario. It can maximize the energy dissipation effect of the interconnected system, achieving rapid suppression of sub-/super-synchronous oscillations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1580-1592"},"PeriodicalIF":6.1,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10977784","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abhishek Saini;Hussain M. Mustafa;Pratyasa Bhui;Anurag K. Srivastava
{"title":"Non-Intrusive Hybrid Two-Stage Detection of Dynamic Attacks in Wide-Area Damping Controller Using Autoencoder and Unscented Kalman Filter with Unknown Input Estimation","authors":"Abhishek Saini;Hussain M. Mustafa;Pratyasa Bhui;Anurag K. Srivastava","doi":"10.35833/MPCE.2024.000946","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000946","url":null,"abstract":"Wide-area damping controllers (WADCs) help in damping poorly damped inter-area oscillations (IAOs) using wide-area measurements. However, the vulnerability of the communication network makes the WADC susceptible to malicious dynamic attacks. Existing cyber-resilient WADC solutions rely on accurate power system models or extensive simulation data for training the machine learning (ML) model, which are difficult to obtain for large-scale power system. This paper proposes a novel non-intrusive hybrid two-stage detection framework that mitigates these limitations by eliminating the need for real-time access to large system data or attack samples for training the ML model. In the first stage, an autoencoder is deployed at the actuator location to detect dynamic attacks with sharp gradient variations, e. g., triangular, saw-tooth, pulse, ramp, and random attack signals. In the second stage, an unscented Kalman filter with unknown input estimation at the control center identifies smoothly varying dynamic attacks by estimating the control signal received by the actuator using synchrophasor measurements. A modified cosine similarity (MCS) metric is proposed to compare and quantify the similarity between the estimated control signal and the control signal sent by the WADC placed at the control center to detect any dynamic attacks. The MCS is designed to differentiate between events and dynamic attacks. The performance of the proposed framework has been validated on a hardware-in-the-loop (HIL) cyber-physical test-bed built by using the OPAL-RT simulator and industry-grade hardware.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1763-1775"},"PeriodicalIF":6.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex Frequency-Based Control for Inverter-Based Resources","authors":"Rodrigo Bernal;Federico Milano","doi":"10.35833/MPCE.2024.000907","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000907","url":null,"abstract":"This paper proposes a novel control scheme for inverter-based resources (IBRs) based on the complex frequency (CF) concept. The control objective is to maintain a constant CF of voltage at the terminals of IBR by adjusting its current reference. This current is imposed based on the well-known power flow equation, the dynamics of which are calculated through estimating the CFs for the voltages of adjacent buses. The performance is evaluated by analyzing the local variations in frequency and voltage magnitude, as well as the frequency of center of inertia (CoI), and then compared with conventional frequency droop, proportional-integral (PI) voltage controllers, and virtual inertia. The case study utilizes a modified version of WSCC 9-bus system and a 1479-bus model of the Irish transmission grid and considers various contingencies and sensitivities such as the impact of current limiters, delays, noise, R/X ratio, and electromagnetic transient (EMT) dynamics. Results show that the proposed control scheme consistently outperforms the conventional controllers, leading to significant improvements in the overall dynamic response of the system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1630-1641"},"PeriodicalIF":6.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974443","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting Capacity Value of Variable Renewable Energy Generation in Power Systems with High Renewable Energy Penetration","authors":"Yanghao Yu;Haiyang Jiang;Ning Zhang;Pei Yong;Fei Teng;Jiawei Zhang;Yating Wang;Goran Strbac","doi":"10.35833/MPCE.2024.001101","DOIUrl":"https://doi.org/10.35833/MPCE.2024.001101","url":null,"abstract":"Adequacy is a key concern of power system planning, which refers to the availability of sufficient facilities to meet demand. The capacity value (CV) of variable renewable energy (VRE) generation represents its equivalent contribution to system adequacy, in comparison to conventional generators. While VRE continues to grow and increasingly dominates the generation portfolio, its CV is becoming non-negligible, with the corresponding impact mechanisms becoming more complicated and nuanced. In this paper, the concept of CV is revisited by analyzing how VRE contributes to power system balancing at a high renewable energy penetration level. A generalized loss function is incorporated into the CV evaluation framework considering the adequacy of the power system. An analytical method for the CV evaluation of VRE is then derived using the statistical properties of both hourly load and VRE generation. Through the explicit CV expression, several critical impact factors, including the VRE generation variance, source-load correlation, and system adequacy level, are identified and discussed. Case studies demonstrate the accuracy and effectiveness of the proposed method in comparison to the traditional capacity factor-based methods and convolution-based methods. In the IEEE-RTS79 test system, the CV of a 2500 MW wind farm (with 40% renewable energy penetration level) is found to be 6.8% of its nameplate capacity. Additionally, the sensitivity of CV to various impact factors in power systems with high renewable energy penetration is analyzed.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1593-1603"},"PeriodicalIF":6.1,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yutong Li;Ningxuan Guo;Lili Wang;Jian Hou;Yinan Wang;Gangfeng Yan
{"title":"Distributed Multi-Scale Attention and Predictor-Based Control for AC Microgrids with Time Delays and Cyber Failures","authors":"Yutong Li;Ningxuan Guo;Lili Wang;Jian Hou;Yinan Wang;Gangfeng Yan","doi":"10.35833/MPCE.2024.000685","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000685","url":null,"abstract":"Distributed secondary control has been proposed to maintain frequency/voltage synchronization and power sharing for distributed energy sources in AC microgrids (MGs). The cyber layer is susceptible to time delays and cyber failures and thus, a distributed resilient secondary control should be investigated. This paper proposes a distributed multi-scale attention and predictor-based control (DMAPC) strategy to address false data injection attacks and packet loss failures with time delays. The multi-scale attention mechanism enables the system to selectively focus on neighbors' states with higher confidence evaluated in different time scales, while the data-driven predictor compensates for lost neighbors' states in the nonlinear controller. The DMAPC does not impose strict limitations on the number of false communication links or upper bound for false data. Besides, the DMAPC is formulated as an uncertain system with time delays and is proven to be uniformly ultimately bounded. Extensive experiments on a hardware-in-the-loop MG testbed have validated the effectiveness of DMAPC, which successfully relaxes restrictions on cyber failures compared to existing strategies.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1800-1812"},"PeriodicalIF":6.1,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955319","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145100502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingjun Wu;Runrun Chen;Yuyang Chen;Xuejie Chen;Jiangfan Yuan;Hengchao Mao;Juefei Wang
{"title":"A Joint Electricity-Reserve Trading Model for Virtual Power Plants to Mitigate Naked Selling","authors":"Yingjun Wu;Runrun Chen;Yuyang Chen;Xuejie Chen;Jiangfan Yuan;Hengchao Mao;Juefei Wang","doi":"10.35833/MPCE.2024.000211","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000211","url":null,"abstract":"Unregulated naked selling of virtual power plants (VPPs) in day-ahead markets poses inherent risks to grid security and market fairness. This paper proposes a joint electricity-reserve trading model for VPPs as a strategic measure to mitigate the negative impacts of naked selling. This model systematically evaluates the economic advantages and risks of naked selling, utilizing metrics such as user comfort and conditional value at risk (CVaR). Furthermore, a sophisticated combination of a data-driven levelset fuzzy approach and advanced algorithms, including support vector quantile regression (SVQR) and kernel density estimation (KDE), is employed to quantify the uncertainties related to prices and reserve activation precisely. The results of case studies demonstrate that integrating default penalties within the proposed trading model diminishes the overall revenue of VPPs engaging in naked selling, thereby serving as a robust decision for mitigating the adverse effects of the naked selling of VPPs.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1813-1822"},"PeriodicalIF":6.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145100303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harmonic Blocking Based Differential Relay Protection Considering Neutral Stray Currents from DC Metro Systems","authors":"Haoran Fan;Sheng Lin;Aimin Wang;Qi Zhou;Hongbo Cheng","doi":"10.35833/MPCE.2024.000440","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000440","url":null,"abstract":"Stray currents from DC metro systems intrude into the grounded neutrals of large power transformers, posing a major threat to the differential relay protection of transformer. In this paper, the performance of harmonic blocking based differential relay protection considering neutral stray currents (NSCs) from DC metro systems is thoroughly investigated. The findings reveal that relays may fail to clear internal faults in some scenarios because they are blocked due to NSC-induced harmonic currents. To improve the reliability of differential relay protection, a method for preventing incorrect operation is proposed using a skewness-based criterion to detect the presence of NSCs. Then, the relay is unblocked when an internal fault is simultaneously detected by the novel internal fault detection block. The proposed method is resistant to current transformer saturation and accounts for NSC fluctuations. Various time-domain simulations conducted in PSCAD/EMTDC verify the effectiveness of the proposed method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1689-1700"},"PeriodicalIF":6.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-Stage Bidding Strategy with Dispatch Potential of Electric Vehicle Aggregators for Mitigating Three-Phase Imbalance","authors":"Chengwei Lou;Chen Li;Lu Zhang;Wei Tang;Jin Yang;Jake Cunningham","doi":"10.35833/MPCE.2024.001067","DOIUrl":"https://doi.org/10.35833/MPCE.2024.001067","url":null,"abstract":"The proliferation of electric vehicles (EVs) introduces transformative opportunities and challenges for the stability of distribution networks. Unregulated EV charging will further exacerbate the inherent three-phase imbalance of the power grid, while regulated EV charging will alleviate such imbalance. To systematically address this challenge, this study proposes a two-stage bidding strategy with dispatch potential of electric vehicle aggregators (EVAs). By constructing a coordinated framework that integrates the day-ahead and real-time markets, the proposed two-stage bidding strategy reconfigures distributed EVA clusters into a controllable dynamic energy storage system, with a particular focus on dynamic compensation for deviations between scheduled and real-time operations. A bi-level Stackelberg game resolves three-phase imbalance by achieving Nash equilibrium for inter-phase balance, with Ka-rush-Kuhn-Tucker (KKT) conditions and mixed-integer second-order cone programming (MISOCP) ensuring feasible solutions. The proposed coordinated framework is validated with different bidding modes includes independent bidding, full price acceptance, and cooperative bidding modes. The proposed two-stage bidding strategy provides an EVA-based coordinated scheduling solution that balances the economic efficiency and phase stability in electricity market.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1823-1835"},"PeriodicalIF":6.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145100449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}