Yutong Li;Ningxuan Guo;Lili Wang;Jian Hou;Yinan Wang;Gangfeng Yan
{"title":"具有时滞和网络故障的交流微电网分布式多尺度关注与预测控制","authors":"Yutong Li;Ningxuan Guo;Lili Wang;Jian Hou;Yinan Wang;Gangfeng Yan","doi":"10.35833/MPCE.2024.000685","DOIUrl":null,"url":null,"abstract":"Distributed secondary control has been proposed to maintain frequency/voltage synchronization and power sharing for distributed energy sources in AC microgrids (MGs). The cyber layer is susceptible to time delays and cyber failures and thus, a distributed resilient secondary control should be investigated. This paper proposes a distributed multi-scale attention and predictor-based control (DMAPC) strategy to address false data injection attacks and packet loss failures with time delays. The multi-scale attention mechanism enables the system to selectively focus on neighbors' states with higher confidence evaluated in different time scales, while the data-driven predictor compensates for lost neighbors' states in the nonlinear controller. The DMAPC does not impose strict limitations on the number of false communication links or upper bound for false data. Besides, the DMAPC is formulated as an uncertain system with time delays and is proven to be uniformly ultimately bounded. Extensive experiments on a hardware-in-the-loop MG testbed have validated the effectiveness of DMAPC, which successfully relaxes restrictions on cyber failures compared to existing strategies.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1800-1812"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955319","citationCount":"0","resultStr":"{\"title\":\"Distributed Multi-Scale Attention and Predictor-Based Control for AC Microgrids with Time Delays and Cyber Failures\",\"authors\":\"Yutong Li;Ningxuan Guo;Lili Wang;Jian Hou;Yinan Wang;Gangfeng Yan\",\"doi\":\"10.35833/MPCE.2024.000685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed secondary control has been proposed to maintain frequency/voltage synchronization and power sharing for distributed energy sources in AC microgrids (MGs). The cyber layer is susceptible to time delays and cyber failures and thus, a distributed resilient secondary control should be investigated. This paper proposes a distributed multi-scale attention and predictor-based control (DMAPC) strategy to address false data injection attacks and packet loss failures with time delays. The multi-scale attention mechanism enables the system to selectively focus on neighbors' states with higher confidence evaluated in different time scales, while the data-driven predictor compensates for lost neighbors' states in the nonlinear controller. The DMAPC does not impose strict limitations on the number of false communication links or upper bound for false data. Besides, the DMAPC is formulated as an uncertain system with time delays and is proven to be uniformly ultimately bounded. Extensive experiments on a hardware-in-the-loop MG testbed have validated the effectiveness of DMAPC, which successfully relaxes restrictions on cyber failures compared to existing strategies.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 5\",\"pages\":\"1800-1812\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955319\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955319/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10955319/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distributed Multi-Scale Attention and Predictor-Based Control for AC Microgrids with Time Delays and Cyber Failures
Distributed secondary control has been proposed to maintain frequency/voltage synchronization and power sharing for distributed energy sources in AC microgrids (MGs). The cyber layer is susceptible to time delays and cyber failures and thus, a distributed resilient secondary control should be investigated. This paper proposes a distributed multi-scale attention and predictor-based control (DMAPC) strategy to address false data injection attacks and packet loss failures with time delays. The multi-scale attention mechanism enables the system to selectively focus on neighbors' states with higher confidence evaluated in different time scales, while the data-driven predictor compensates for lost neighbors' states in the nonlinear controller. The DMAPC does not impose strict limitations on the number of false communication links or upper bound for false data. Besides, the DMAPC is formulated as an uncertain system with time delays and is proven to be uniformly ultimately bounded. Extensive experiments on a hardware-in-the-loop MG testbed have validated the effectiveness of DMAPC, which successfully relaxes restrictions on cyber failures compared to existing strategies.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.