Njegos Jankovic;Javier Roldán-Pérez;Milan Prodanovic;Jon Are Suul;Salvatore D’Arco;Luis Rouco
{"title":"基于变流器接口发电机的电厂网络重构感知功率振荡阻尼控制器","authors":"Njegos Jankovic;Javier Roldán-Pérez;Milan Prodanovic;Jon Are Suul;Salvatore D’Arco;Luis Rouco","doi":"10.35833/MPCE.2024.000057","DOIUrl":null,"url":null,"abstract":"In recent years, transmission system operators have started requesting converter-interfaced generators (CIGs) to participate in grid services such as power oscillation damping (POD). As power systems are prone to topology changes because of connection and disconnection of generators and lines, one of the most important requirements in the design of POD controller is to account for these changes. This can be done by either adjusting the controller structure during the operation or applying a fixed structure designed to address changes in the system. The fixed structure is usually preferred by transmission system operators since it is easier to determine its impact on the system. In this paper, a design procedure is proposed for network-reconfiguration-aware POD controller with fixed structure for CIG-based power plants that considers network configurations with any one line disconnected. The design procedure is based on frequency-response techniques, so it is suitable for application in CIG-based power plants, even in cases when a detailed small-signal model of the system is not available. Designs of a POD controller for the damping of critical system modes can be obtained by using active power, reactive power, or both power components simultaneously. The application to the design of a POD controller for a CIG-based power plant connected to the IEEE 39-bus system is presented as an example. Simulations performed in MATLAB and SimPowerSystems are used to validate the proposed design procedure. The validation includes an analysis of system performance with changes considered in the proposed designed procedure. Also, the system performance under unconsidered changes is examined, covering variations in load and inertia values, as well as disconnection of synchronous generators.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1420-1431"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923627","citationCount":"0","resultStr":"{\"title\":\"Network-Reconfiguration-Aware Power Oscillation Damping Controller for Converter-Interfaced Generator Based Power Plants\",\"authors\":\"Njegos Jankovic;Javier Roldán-Pérez;Milan Prodanovic;Jon Are Suul;Salvatore D’Arco;Luis Rouco\",\"doi\":\"10.35833/MPCE.2024.000057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, transmission system operators have started requesting converter-interfaced generators (CIGs) to participate in grid services such as power oscillation damping (POD). As power systems are prone to topology changes because of connection and disconnection of generators and lines, one of the most important requirements in the design of POD controller is to account for these changes. This can be done by either adjusting the controller structure during the operation or applying a fixed structure designed to address changes in the system. The fixed structure is usually preferred by transmission system operators since it is easier to determine its impact on the system. In this paper, a design procedure is proposed for network-reconfiguration-aware POD controller with fixed structure for CIG-based power plants that considers network configurations with any one line disconnected. The design procedure is based on frequency-response techniques, so it is suitable for application in CIG-based power plants, even in cases when a detailed small-signal model of the system is not available. Designs of a POD controller for the damping of critical system modes can be obtained by using active power, reactive power, or both power components simultaneously. The application to the design of a POD controller for a CIG-based power plant connected to the IEEE 39-bus system is presented as an example. Simulations performed in MATLAB and SimPowerSystems are used to validate the proposed design procedure. The validation includes an analysis of system performance with changes considered in the proposed designed procedure. Also, the system performance under unconsidered changes is examined, covering variations in load and inertia values, as well as disconnection of synchronous generators.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 4\",\"pages\":\"1420-1431\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923627\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10923627/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10923627/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Network-Reconfiguration-Aware Power Oscillation Damping Controller for Converter-Interfaced Generator Based Power Plants
In recent years, transmission system operators have started requesting converter-interfaced generators (CIGs) to participate in grid services such as power oscillation damping (POD). As power systems are prone to topology changes because of connection and disconnection of generators and lines, one of the most important requirements in the design of POD controller is to account for these changes. This can be done by either adjusting the controller structure during the operation or applying a fixed structure designed to address changes in the system. The fixed structure is usually preferred by transmission system operators since it is easier to determine its impact on the system. In this paper, a design procedure is proposed for network-reconfiguration-aware POD controller with fixed structure for CIG-based power plants that considers network configurations with any one line disconnected. The design procedure is based on frequency-response techniques, so it is suitable for application in CIG-based power plants, even in cases when a detailed small-signal model of the system is not available. Designs of a POD controller for the damping of critical system modes can be obtained by using active power, reactive power, or both power components simultaneously. The application to the design of a POD controller for a CIG-based power plant connected to the IEEE 39-bus system is presented as an example. Simulations performed in MATLAB and SimPowerSystems are used to validate the proposed design procedure. The validation includes an analysis of system performance with changes considered in the proposed designed procedure. Also, the system performance under unconsidered changes is examined, covering variations in load and inertia values, as well as disconnection of synchronous generators.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.