Xiaoge Huang;Zhenhuan Ding;Zhao Liu;Tianqiao Zhao;Pei Zhang;Xiaojun Wang
{"title":"Bidding Strategy for Hybrid PV-BESS Plants via Knowledge-Data-Complementary Learning","authors":"Xiaoge Huang;Zhenhuan Ding;Zhao Liu;Tianqiao Zhao;Pei Zhang;Xiaojun Wang","doi":"10.35833/MPCE.2024.000279","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000279","url":null,"abstract":"The hybrid photovoltaic (PV)-battery energy storage system (BESS) plant (HPP) can gain revenue by performing energy arbitrage in low-carbon power systems. However, multiple operational uncertainties challenge the profitability and reliability of HPP in the day-ahead market. This paper proposes two coherent models to address these challenges. Firstly, a knowledge-driven penalty-based bidding (PBB) model for HPP is established, considering forecast errors of PV generation, market prices, and under-generation penalties. Secondly, a data-driven dynamic error quantification (DEQ) model is used to capture the variational pattern of the distribution of forecast errors. The role of the DEQ model is to guide the knowledge-driven bidding model. Notably, the DEQ model aims at the statistical optimum, but the knowledge-driven PBB model aims at the operational optimum. These two models have independent optimizations based on misaligned objectives. To address this, the knowledge-data-complementary learning (KDCL) framework is proposed to align data-driven performance with knowledge-driven objectives, thereby enhancing the overall performance of the bidding strategy. A tailored algorithm is proposed to solve the bidding strategy. The proposed bidding strategy is validated by using data from the National Renewable Energy Laboratory (NREL) and the New York Independent System Operator (NYISO).","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"365-378"},"PeriodicalIF":5.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554990","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency-Constrained Unit Commitment Considering Typhoon-Induced Wind Farm Cutoff and Grid Islanding Events","authors":"Yanqi Liu;Dunjian Xie;Hongcai Zhang","doi":"10.35833/MPCE.2024.000067","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000067","url":null,"abstract":"In coastal regions of China, offshore wind farm expansion has spurred extensive research to reduce operational costs in power systems with high penetration of wind power. However, frequent extreme weather conditions such as typhoons pose substantial challenges to system stability and security. Previous research has intensively examined the steady-state operations arising from typhoon-induced faults, with a limited emphasis on the transient frequency dynamics inherent to such faults. To address this challenge, this paper proposes a frequency-constrained unit commitment model that can promote energy utilization and improve resilience. The proposed model analyzes uncertainties stemming from transmission line failures and offshore wind generation through typhoon simulations. Two types of power disturbances resulting from typhoon-induced wind farm cutoff and grid islanding events are revealed. In addition, new frequency constraints are defined considering the changes in the topology of the power system. Further, the complex frequency nadir constraints are incorporated into a two-stage stochastic unit commitment model using the piece-wise linearization. Finally, the proposed model is verified by numerical experiments, and the results demonstrate that the proposed model can effectively enhance system resilience under typhoons and improve frequency dynamic characteristics following fault disturbances.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1760-1772"},"PeriodicalIF":5.7,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10554988","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Submodule Capacitor Condition Monitoring Method for Modular Multilevel Converters Considering Switching States","authors":"Zan Jia;Yongjie Luo;Qianggang Wang;Niancheng Zhou;Yonghui Song;Dachuan Yu","doi":"10.35833/MPCE.2024.000056","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000056","url":null,"abstract":"The capacitor is one of the most important components in a modular multilevel converter (MMC). Due to the chemical process and the aging effect, the capacitor is subject to deterioration over time which is usually manifested by a drop in capacitance. To identify the abnormal capacitors and enhance the reliability of MMCs, an improved submodule (SM) capacitor condition monitoring method is proposed in this paper. The proposed method estimates the capacitance during each control cycle based on the switching states of SMs, offering advantages such as high accuracy and no adverse influence on the operation of MMCs. Firstly, the aging differences of capacitors in different SMs per arm of MMC are analyzed. Then, the capacitances of SMs that switch on the state are calculated based on the relationship between the capacitor voltage and current during each control cycle. A data processing algorithm is proposed to improve the accuracy of capacitance estimation. Finally, the simulation and the real-time control hardware-in-the loop test results based on real-time digital simulator (RTDS) show the effectiveness of the proposed method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2071-2080"},"PeriodicalIF":5.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508289","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Lu;Xinzhe Fan;Haifeng Qiu;Wei Gan;Wei Gu;Shiwei Xia;Xiao Luo
{"title":"Machine Learning Based Uncertainty-Alleviating Operation Model for Distribution Systems with Energy Storage","authors":"Xi Lu;Xinzhe Fan;Haifeng Qiu;Wei Gan;Wei Gu;Shiwei Xia;Xiao Luo","doi":"10.35833/MPCE.2023.000613","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000613","url":null,"abstract":"In this paper, an operation model for distribution systems with energy storage (ES) is proposed and solved with the aid of machine learning. The model considers ES applications with uncertainty realizations. It also considers ES applications for economy and security purposes. Considering the special features of ES operations under day-ahead decision mechanisms of distribution systems, an ES operation scheme is designed for transferring uncertainties to later hours through ES to ensure the secure operation of distribution system. As a result, uncertainties from different time intervals are assembled and may counteract each other, thereby alleviating the uncertainties. As different ES applications rely on ES flexibility (in terms of charging and discharging) and interact with each other, by coordinating different ES applications, the proposed operation model achieves efficient exploit of ES flexibility. To shorten the computation time, a long short-term memory recurrent neural network is used to determine the binary variables corresponding to ES status. The proposed operation model then becomes a convex optimization problem and is solved precisely. Thus, the solving efficiency is greatly improved while ensuring the satisfactory use of ES flexibility in distribution system operation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1605-1616"},"PeriodicalIF":5.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangning Tan;Junliang Liu;Xiong Du;Jingyuan Su;Lijuan Fan
{"title":"Multi-Port Network Modeling and Stability Analysis of VSC-MTDC Systems","authors":"Shangning Tan;Junliang Liu;Xiong Du;Jingyuan Su;Lijuan Fan","doi":"10.35833/MPCE.2023.000648","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000648","url":null,"abstract":"The voltage source converter based multi-terminal high-voltage direct current (VSC-MTDC) system has attracted much attention because it can achieve the interconnection between AC grids. However, the initial phases and short-circuit ratios (SCRs) of the interconnected AC grids cause the steady-state phases (SSPs) of AC ports in the VSC-MTDC system to be different. This can lead to issues such as mismatches in multiple converter reference frame systems, potentially causing inaccuracies in stability analysis when this phenomenon is disregarded. To address the aforementioned issues, a multi-port network model of the VSC-MTDC system, which considers the SSPs of the AC grids and AC ports, is derived by multiplying the port models of different subsystems (SSs). The proposed multi-port network model can accurately describe the transmission characteristics between the input and output ports of the system. Additionally, this model facilitates accurate analysis of the system stability. Furthermore, it identifies the key factors affecting the system stability. Ultimately, the accuracy of the proposed multi-port network model and the analysis of key factors are verified by time-domain simulations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1666-1677"},"PeriodicalIF":5.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10507191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuefei Zhang;Chunsheng Guo;Yiyao Zhou;Xiaolong Xu;Jianquan Liao;Niancheng Zhou;Qianggang Wang
{"title":"Unbalanced Voltage Suppression of Bipolar DC Microgrids with Integration of DC Zero-Carbon Buildings","authors":"Xuefei Zhang;Chunsheng Guo;Yiyao Zhou;Xiaolong Xu;Jianquan Liao;Niancheng Zhou;Qianggang Wang","doi":"10.35833/MPCE.2023.000713","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000713","url":null,"abstract":"Considering the majority of electrical equipment utilized in society is driven by DC, integrating a DC system can significantly enhance the efficiency and reliability of power systems by implementing the integration of diverse loads, renewable energy sources (RESs), and energy storage systems (ESSs). In this paper, the integration of multiple DC zero-carbon buildings (DC-ZCBs) is proposed to achieve the unbalanced voltage suppression of the bipolar DC microgrid (DCMG). The photo-voltaic (PV) technology, loads, and DC electric springs (DC-ESs) are adopted as a unified entity to achieve the zero-carbon emission of the building. Firstly, a new configuration of PV and DC-ESs is introduced. The energy management of PV, ESS, and load are fully considered in this new configuration, which can reduce the capacity of the ESS. Subsequently, a distributed co-operative control strategy for DC-ESs based on the modulus voltage is presented, which is implemented with integration of the new configuration into the bipolar DCMG. The proposed approach addresses the issues of unbalanced voltage to improve the operating efficiency and power quality of the bipolar DC-MG. The simulation is conducted in MATLAB/Simulink platform to confirm the effectiveness of the proposed approach.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1942-1956"},"PeriodicalIF":5.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10507192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid Local-Global Power-Sharing Scheme for Droop-Free Controlled Microgrids","authors":"Kunyu Zuo;Lei Wu","doi":"10.35833/MPCE.2023.000652","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000652","url":null,"abstract":"The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals, i. e., sharing disturbance mitigation among all controllable assets to even their burden. However, limited by neighboring communication, the time-consuming peer-to-peer coordination of the droop-free control slows down the nodal convergence to global consensus, reducing the power-sharing efficiency as the number of nodes increases. To this end, this paper first proposes a local power-sharing droop-free control scheme to contain disturbances within nearby nodes, in order to reduce the number of nodes involved in the coordination and accelerate the convergence speed. A hybrid local-global power-sharing scheme is then put forward to leverage the merits of both schemes, which also enables the autonomous switching between local and global power-sharing modes according to the system states. Systematic guidance for key control parameter designs is derived via the optimal control methods, by optimizing the power-sharing distributions at the steady-state consensus as well as along the dynamic trajectory to consensus. System stability of the hybrid scheme is proved by the eigenvalue analysis and Lyapunov direct method. Moreover, simulation results validate that the proposed hybrid local-global power-sharing scheme performs stably against disturbances and achieves the expected control performance in local and global power-sharing modes as well as mode transitions. Moreover, compared with the classical global power-sharing scheme, the proposed scheme presents promising benefits in convergence speed and scalability.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1520-1534"},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear Model Predictive Controller for Compensations of Single Line-to-Ground Fault in Resonant Grounded Power Distribution Networks","authors":"Warnakulasuriya Sonal Prashenajith Fernando;Mostafa Barzegar-Kalashani;Md Apel Mahmud;Shama Naz Islam;Nasser Hosseinzadeh","doi":"10.35833/MPCE.2023.000065","DOIUrl":"10.35833/MPCE.2023.000065","url":null,"abstract":"An nonlinear model predictive controller (NMPC) is proposed in this paper for compensations of single line-to-ground (SLG) faults in resonant grounded power distribution networks (RGPDNs), which reduces the likelihood of power line bushfire due to electric faults. Residual current compensation (RCC) inverters with arc suppression coils (ASCs) in RGPDNs are controlled using the proposed NMPC to provide appropriate compensations during SLG faults. The proposed NMPC is incorporated with the estimation of ASC inductance, where the estimation is carried out based on voltage and current measurements from the neutral point of the distribution network. The compensation scheme is developed in the discrete time using the equivalent circuit of RGPDNs. The proposed NMPC for RCC inverters ensures that the desired current is injected into the neutral point during SLG faults, which is verified through both simulations and control hardware-in-the-loop (CHIL) validations. Comparative results are also presented against an integral sliding mode controller (ISMC) by demonstrating the capability of power line bushfire mitigation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1113-1125"},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Embedded Consensus ADMM Distribution Algorithm Based on Outer Approximation for Improved Robust State Estimation of Networked Microgrids","authors":"Zifeng Zhang;Yuntao Ju","doi":"10.35833/MPCE.2023.000565","DOIUrl":"10.35833/MPCE.2023.000565","url":null,"abstract":"Networked microgrids (NMGs) are critical in the accommodation of distributed renewable energy. However, the existing centralized state estimation (SE) cannot meet the demands of NMGs in distributed energy management. The current estimator is also not robust against bad data. This study introduces the concepts of relative error to construct an improved robust SE (IRSE) optimization model with mixed-integer nonlinear programming (MINLP) that overcomes the disadvantage of inaccurate results derived from different measurements when the same tolerance range is considered in the robust SE (RSE). To improve the computation efficiency of the IRSE optimization model, the number of binary variables is reduced based on the projection statistics and normalized residual methods, which effectively avoid the problem of slow convergence or divergence of the algorithm caused by too many integer variables. Finally, an embedded consensus alternating direction of multiplier method (ADMM) distribution algorithm based on outer approximation (OA) is proposed to solve the IRSE optimization model. This algorithm can accurately detect bad data and obtain SE results that communicate only the boundary coupling information with neighbors. Numerical tests show that the proposed algorithm effectively detects bad data, obtains more accurate SE results, and ensures the protection of private information in all microgrids.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1217-1226"},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Yang;Haotian Liu;Wenchuan Wu;Qi Wang;Peng Yu;Jiawei Xing;Yuejiao Wang
{"title":"Reinforcement Learning with Enhanced Safety for Optimal Dispatch of Distributed Energy Resources in Active Distribution Networks","authors":"Xu Yang;Haotian Liu;Wenchuan Wu;Qi Wang;Peng Yu;Jiawei Xing;Yuejiao Wang","doi":"10.35833/MPCE.2023.000893","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000893","url":null,"abstract":"As numerous distributed energy resources (DERs) are integrated into the distribution networks, the optimal dispatch of DERs is more and more imperative to achieve transition to active distribution networks (ADNs). Since accurate models are usually unavailable in ADNs, an increasing number of reinforcement learning (RL) based methods have been proposed for the optimal dispatch problem. However, these RL based methods are typically formulated without safety guarantees, which hinders their application in real world. In this paper, we propose an RL based method called supervisor-projector-enhanced safe soft actor-critic (S3AC) for the optimal dispatch of DERs in ADNs, which not only minimizes the operational cost but also satisfies safety constraints during online execution. In the proposed S3AC, the data-driven supervisor and projector are pre-trained based on the historical data from supervisory control and data acquisition (SCADA) system, effectively providing enhanced safety for executed actions. Numerical studies on several IEEE test systems demonstrate the effectiveness and safety of the proposed S3AC.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1484-1494"},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}