饱和约束下基于下垂的直流电力系统大信号分析与控制器综合

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinghan Zhao;Keting Wan;Yongpan Chen;Miao Yu
{"title":"饱和约束下基于下垂的直流电力系统大信号分析与控制器综合","authors":"Jinghan Zhao;Keting Wan;Yongpan Chen;Miao Yu","doi":"10.35833/MPCE.2024.000164","DOIUrl":null,"url":null,"abstract":"In DC power systems dominated by power electronic devices, constant power loads (CPLs) and saturation components significantly impact large-signal stability. During the large-signal stability analysis process, the presence of multiple state variables and high-order system poses substantial challenges. To address this, considering the complete control dynamics, this paper proposes an equivalent single-machine (ESM) model of the droop-based DC power systems to reduce the complexity of the large-signal analysis. Building on the proposed ESM model, considering the dynamics of CPL and saturation constraints, a region of attraction (ROA) estimation algorithm based on sum of squares (SOS) programming is proposed, which significantly reduces the conservativeness compared with other existing methods. Furthermore, a control parameter optimization algorithm based on SOS programming is proposed with the aim of expanding the ROA. Furthermgre, with the aim of expanding the ROA, controller sythesis is conducted with proposed control parameter optimization algorithm based on SOS programming. Ultimately, simulation experiments validate the accuracy of the proposed ESM model and the proposed ROA estimation algorithm, as well as the effectiveness of the control parameter optimization algorithm.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"791-801"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908516","citationCount":"0","resultStr":"{\"title\":\"Large-Signal Analysis and Controller Synthesis of Droop-Based DC Power System with Saturation Constraints\",\"authors\":\"Jinghan Zhao;Keting Wan;Yongpan Chen;Miao Yu\",\"doi\":\"10.35833/MPCE.2024.000164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In DC power systems dominated by power electronic devices, constant power loads (CPLs) and saturation components significantly impact large-signal stability. During the large-signal stability analysis process, the presence of multiple state variables and high-order system poses substantial challenges. To address this, considering the complete control dynamics, this paper proposes an equivalent single-machine (ESM) model of the droop-based DC power systems to reduce the complexity of the large-signal analysis. Building on the proposed ESM model, considering the dynamics of CPL and saturation constraints, a region of attraction (ROA) estimation algorithm based on sum of squares (SOS) programming is proposed, which significantly reduces the conservativeness compared with other existing methods. Furthermore, a control parameter optimization algorithm based on SOS programming is proposed with the aim of expanding the ROA. Furthermgre, with the aim of expanding the ROA, controller sythesis is conducted with proposed control parameter optimization algorithm based on SOS programming. Ultimately, simulation experiments validate the accuracy of the proposed ESM model and the proposed ROA estimation algorithm, as well as the effectiveness of the control parameter optimization algorithm.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 3\",\"pages\":\"791-801\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908516\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908516/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908516/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在以电力电子器件为主的直流电力系统中,恒功率负载和饱和元件对大信号稳定性的影响很大。在大信号稳定性分析过程中,多状态变量和高阶系统的存在给系统稳定性分析带来了巨大的挑战。为了解决这一问题,考虑到完全控制动力学,本文提出了基于下垂的直流电力系统的等效单机(ESM)模型,以减少大信号分析的复杂性。在提出的ESM模型的基础上,考虑CPL的动态性和饱和约束,提出了一种基于平方和规划的吸引区域(ROA)估计算法,与现有方法相比,该算法显著降低了保守性。在此基础上,提出了一种基于SOS规划的控制参数优化算法,以扩大系统的ROA。在此基础上,采用基于SOS规划的控制参数优化算法进行控制器综合,以扩大系统的ROA。最后通过仿真实验验证了所提ESM模型和所提ROA估计算法的准确性,以及控制参数优化算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-Signal Analysis and Controller Synthesis of Droop-Based DC Power System with Saturation Constraints
In DC power systems dominated by power electronic devices, constant power loads (CPLs) and saturation components significantly impact large-signal stability. During the large-signal stability analysis process, the presence of multiple state variables and high-order system poses substantial challenges. To address this, considering the complete control dynamics, this paper proposes an equivalent single-machine (ESM) model of the droop-based DC power systems to reduce the complexity of the large-signal analysis. Building on the proposed ESM model, considering the dynamics of CPL and saturation constraints, a region of attraction (ROA) estimation algorithm based on sum of squares (SOS) programming is proposed, which significantly reduces the conservativeness compared with other existing methods. Furthermore, a control parameter optimization algorithm based on SOS programming is proposed with the aim of expanding the ROA. Furthermgre, with the aim of expanding the ROA, controller sythesis is conducted with proposed control parameter optimization algorithm based on SOS programming. Ultimately, simulation experiments validate the accuracy of the proposed ESM model and the proposed ROA estimation algorithm, as well as the effectiveness of the control parameter optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信