{"title":"Intelligence-Driven Grid-Forming Converter Control for Islanding Microgrids","authors":"Issarachai Ngamroo;Tossaporn Surinkaew;Yasunori Mitani","doi":"10.35833/MPCE.2024.001157","DOIUrl":null,"url":null,"abstract":"In modern microgrids (MGs) with high penetration of distributed energy resources (DERs), system reconfiguration occurs more frequently and becomes a significant issue. Fixed-parameter controllers may not handle these tasks effectively, as they lack the ability to adapt to the dynamic conditions in such environments. This paper proposes an intelligence-driven grid-forming (GFM) converter control method for islanding MGs using a robustness-guided neural network (RNN). To enhance the adaptability of the proposed method, traditional proportional-integral controllers in the GFM primary control loops are entirely replaced by the RNN. The RNN is trained by a robustness-guided strategy to replicate their robust behaviors. All the training stages are purely data-driven methods, which means that no system parameters are required for the controller design. Consequently, the proposed method is an intelligence-driven modelless GFM converter control. Compared with traditional methods, the simulation results in all testing scenarios show the clear benefits of the proposed method. The proposed method reduces overshoots by more than 71.24%, which keeps all damping ratios within the stable region and provides faster stabilization. In comparison to traditional methods, at the highest probability, the proposed method improves damping by over 14.7% and reduces the rates of change of frequency and voltage by over 59.97%. Additionally, the proposed method effectively suppresses the interactions between state variables caused by inverter-based resources, with frequencies ranging from 1.0 Hz to 1.422 Hz. Consequently, these frequencies contribute less than 19.79% To the observed transient responses.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1310-1322"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10916672","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916672/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In modern microgrids (MGs) with high penetration of distributed energy resources (DERs), system reconfiguration occurs more frequently and becomes a significant issue. Fixed-parameter controllers may not handle these tasks effectively, as they lack the ability to adapt to the dynamic conditions in such environments. This paper proposes an intelligence-driven grid-forming (GFM) converter control method for islanding MGs using a robustness-guided neural network (RNN). To enhance the adaptability of the proposed method, traditional proportional-integral controllers in the GFM primary control loops are entirely replaced by the RNN. The RNN is trained by a robustness-guided strategy to replicate their robust behaviors. All the training stages are purely data-driven methods, which means that no system parameters are required for the controller design. Consequently, the proposed method is an intelligence-driven modelless GFM converter control. Compared with traditional methods, the simulation results in all testing scenarios show the clear benefits of the proposed method. The proposed method reduces overshoots by more than 71.24%, which keeps all damping ratios within the stable region and provides faster stabilization. In comparison to traditional methods, at the highest probability, the proposed method improves damping by over 14.7% and reduces the rates of change of frequency and voltage by over 59.97%. Additionally, the proposed method effectively suppresses the interactions between state variables caused by inverter-based resources, with frequencies ranging from 1.0 Hz to 1.422 Hz. Consequently, these frequencies contribute less than 19.79% To the observed transient responses.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.