Continuous Control Set Model Predictive Control of Modular Multilevel Matrix Converters for Low-frequency AC Transmission

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Matias Uriarte;Roberto Cardenas-Dobson;Yeiner Arias-Esquivel;Matias Diaz;Oriol Gomis-Bellmunt
{"title":"Continuous Control Set Model Predictive Control of Modular Multilevel Matrix Converters for Low-frequency AC Transmission","authors":"Matias Uriarte;Roberto Cardenas-Dobson;Yeiner Arias-Esquivel;Matias Diaz;Oriol Gomis-Bellmunt","doi":"10.35833/MPCE.2024.000654","DOIUrl":null,"url":null,"abstract":"This paper proposes a continuous control set model predictive control (CCS-MPC) algorithm of a modular multilevel matrix converter (M3C) for low-frequency AC transmission (LFAC), via which the offshore wind farm (OWF) is integrated. The M3C is operated with a 16.7 Hz frequency at the OWF side and a 50 Hz frequency at the onshore grid side. The balance of the capacitor voltages and the regulation of circulating currents in the M3C are performed using the proposed CCS-MPC algorithm, which is based on the online solution of a cost function with constraints. Simulation and experimental work (with a 5 kW M3C prototype) are provided, showing the performance of the LFAC system to operate with symmetrical and asymmetrical voltage dips, active and reactive power steps, and optimal limitation of currents and voltages using constraints. Unlike previous publications, the predictive control system in this paper allows seamless operation under balanced and unbalanced conditions, for instance, during asymmetrical voltage dips.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1468-1480"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10944522/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a continuous control set model predictive control (CCS-MPC) algorithm of a modular multilevel matrix converter (M3C) for low-frequency AC transmission (LFAC), via which the offshore wind farm (OWF) is integrated. The M3C is operated with a 16.7 Hz frequency at the OWF side and a 50 Hz frequency at the onshore grid side. The balance of the capacitor voltages and the regulation of circulating currents in the M3C are performed using the proposed CCS-MPC algorithm, which is based on the online solution of a cost function with constraints. Simulation and experimental work (with a 5 kW M3C prototype) are provided, showing the performance of the LFAC system to operate with symmetrical and asymmetrical voltage dips, active and reactive power steps, and optimal limitation of currents and voltages using constraints. Unlike previous publications, the predictive control system in this paper allows seamless operation under balanced and unbalanced conditions, for instance, during asymmetrical voltage dips.
低频交流传输模块化多电平矩阵变换器的连续控制集模型预测控制
提出了一种用于低频交流输电(LFAC)的模块化多电平矩阵变换器(M3C)的连续控制集模型预测控制(CCS-MPC)算法,并通过该算法集成海上风电场(OWF)。M3C在OWF侧的工作频率为16.7 Hz,在陆上电网侧的工作频率为50 Hz。采用基于约束代价函数在线解的CCS-MPC算法实现了电容器电压的平衡和循环电流的调节。仿真和实验工作(5kw M3C样机)显示了LFAC系统在对称和不对称电压降、有功和无功功率阶跃以及使用约束的最佳电流和电压限制下的性能。与以前的出版物不同,本文中的预测控制系统允许在平衡和不平衡条件下无缝运行,例如,在不对称电压下降期间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信