Plant ReproductionPub Date : 2022-03-01Epub Date: 2021-07-07DOI: 10.1007/s00497-021-00425-0
Maurizio Iovane, Giovanna Aronne
{"title":"High temperatures during microsporogenesis fatally shorten pollen lifespan.","authors":"Maurizio Iovane, Giovanna Aronne","doi":"10.1007/s00497-021-00425-0","DOIUrl":"https://doi.org/10.1007/s00497-021-00425-0","url":null,"abstract":"<p><p>Many crop species are cultivated to produce seeds and/or fruits and therefore need reproductive success to occur. Previous studies proved that high temperature on mature pollen at anther dehiscence reduce viability and germinability therefore decreasing crop productivity. We hypothesized that high temperature might affect pollen functionality even if the heat treatment is exerted only during the microsporogenesis. Experimental data on Solanum lycopersicum 'Micro-Tom' confirmed our hypothesis. Microsporogenesis successfully occurred at both high (30 °C) and optimal (22 °C) temperature. After the anthesis, viability and germinability of the pollen developed at optimal temperature gradually decreased and the reduction was slightly higher when pollen was incubated at 30 °C. Conversely, temperature effect was eagerly enhanced in pollen developed at high temperature. In this case, a drastic reduction of viability and a drop-off to zero of germinability occurred not only when pollen was incubated at 30 °C but also at 22 °C. Further ontogenetic analyses disclosed that high temperature significantly speeded-up the microsporogenesis and the early microgametogenesis (from vacuolated stage to bi-cellular pollen); therefore, gametophytes result already senescent at flower anthesis. Our work contributes to unravel the effects of heat stress on pollen revealing that high temperature conditions during microsporogenesis prime a fatal shortening of the male gametophyte lifespan.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"35 1","pages":"9-17"},"PeriodicalIF":3.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00425-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39160755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The epigenetic origin of life history transitions in plants and algae.","authors":"Jérômine Vigneau, Michael Borg","doi":"10.1007/s00497-021-00422-3","DOIUrl":"https://doi.org/10.1007/s00497-021-00422-3","url":null,"abstract":"<p><p>Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 4","pages":"267-285"},"PeriodicalIF":3.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00422-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10265187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-09-01Epub Date: 2021-06-19DOI: 10.1007/s00497-021-00418-z
Shiori Nagahara, Tetsuya Higashiyama, Yoko Mizuta
{"title":"Detection of a biolistic delivery of fluorescent markers and CRISPR/Cas9 to the pollen tube.","authors":"Shiori Nagahara, Tetsuya Higashiyama, Yoko Mizuta","doi":"10.1007/s00497-021-00418-z","DOIUrl":"https://doi.org/10.1007/s00497-021-00418-z","url":null,"abstract":"<p><strong>Key message: </strong>Biolistic delivery into pollen. In recent years, genome editing techniques, such as the CRISPR/Cas9 system, have been highlighted as a new approach to plant breeding. Agrobacterium-mediated transformation has been widely utilized to generate transgenic plants by introducing plasmid DNA containing CRISPR/Cas9 into plant cells. However, this method has general limitations, such as the limited host range of Agrobacterium and difficulties in tissue culture, including callus induction and regeneration. To avoid these issues, we developed a method to genetically modify germ cells without the need for Agrobacterium-mediated transfection and tissue culture using tobacco as a model. In this study, plasmid DNA containing sequences of Cas9, guide RNA, and fluorescent reporter was introduced into pollen using a biolistic delivery system. Based on the transient expression of fluorescent reporters, the Arabidopsis UBQ10 promoter was found to be the most suitable promoter for driving the expression of the delivered gene in pollen tubes. We also evaluated the delivery efficiency in male germ cells in the pollen by expression of the introduced fluorescent marker. Mutations were detected in the target gene in the genomic DNA extracted from CRISPR/Cas9-introduced pollen tubes, but were not detected in the negative control. Bombarded pollen germinated pollen tubes and delivered their contents into the ovules in vivo. Although it is necessary to improve biolistic delivery efficiency and establish a method for the screening of genome-modified seeds, our findings provide important insights for the detection and production of genome-modified seeds by pollen biolistic delivery.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"191-205"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00418-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39246089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development.","authors":"Zhaodong Hao, Zhongjuan Zhang, Daoquan Xiang, Prakash Venglat, Jinhui Chen, Peng Gao, Raju Datla, Dolf Weijers","doi":"10.1007/s00497-021-00413-4","DOIUrl":"10.1007/s00497-021-00413-4","url":null,"abstract":"<p><strong>Key message: </strong>Developmental and transcriptomic analysis of Brachypodium embryogenesis and comparison with Arabidopsis identifies conserved and divergent phases of embryogenesis and reveals widespread heterochrony of developmental gene expression. Embryogenesis, transforming the zygote into the mature embryo, represents a fundamental process for all flowering plants. Current knowledge of cell specification and differentiation during plant embryogenesis is largely based on studies of the dicot model plant Arabidopsis thaliana. However, the major crops are monocots and the transcriptional programs associated with the differentiation processes during embryogenesis in this clade were largely unknown. Here, we combined analysis of cell division patterns with development of a temporal transcriptomic resource during embryogenesis of the monocot model plant Brachypodium distachyon. We found that early divisions of the Brachypodium embryo were highly regular, while later stages were marked by less stereotypic patterns. Comparative transcriptomic analysis between Brachypodium and Arabidopsis revealed that early and late embryogenesis shared a common transcriptional program, whereas mid-embryogenesis was divergent between species. Analysis of orthology groups revealed widespread heterochronic expression of potential developmental regulators between the species. Interestingly, Brachypodium genes tend to be expressed at earlier stages than Arabidopsis counterparts, which suggests that embryo patterning may occur early during Brachypodium embryogenesis. Detailed investigation of auxin-related genes shows that the capacity to synthesize, transport and respond to auxin is established early in the embryo. However, while early PIN1 polarity could be confirmed, it is unclear if an active response is mounted. This study presents a resource for studying Brachypodium and grass embryogenesis and shows that divergent angiosperms share a conserved genetic program that is marked by heterochronic gene expression.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"207-224"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38950132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-09-01Epub Date: 2021-07-02DOI: 10.1007/s00497-021-00420-5
Scott T Meissner
{"title":"Plant sexual reproduction: perhaps the current plant two-sex model should be replaced with three- and four-sex models?","authors":"Scott T Meissner","doi":"10.1007/s00497-021-00420-5","DOIUrl":"https://doi.org/10.1007/s00497-021-00420-5","url":null,"abstract":"<p><p>The two-sex model makes the assumption that there are only two sexual reproductive states: male and female. However, in land plants (embryophytes) the application of this model to the alternation of generations life cycle requires the subtle redefinition of several common terms related to sexual reproduction, which seems to obscure aspects of one or the other plant generation: For instance, the homosporous sporophytic plant is treated as being asexual, and the gametophytes of angiosperms treated like mere gametes. In contrast, the proposal is made that the sporophytes of homosporous plants are indeed sexual reproductive organisms, as are the gametophytes of heterosporous plants. This view requires the expansion of the number of sexual reproductive states we accept for these plant species; therefore, a three-sex model for homosporous plants and a four-sex model for heterosporous plants are described and then contrasted with the current two-sex model. These new models allow the use of sexual reproductive terms in a manner largely similar to that seen in animals, and may better accommodate the plant alternation of generations life cycle than does the current plant two-sex model. These new models may also help stimulate new lines of research, and examples of how they might alter our view of events in the flower, and may lead to new questions about sexual determination and differentiation, are presented. Thus it is suggested that land plant species have more than merely two sexual reproductive states and that recognition of this may promote our study and understanding of them.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"175-189"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00420-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39075192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-09-01Epub Date: 2021-05-22DOI: 10.1007/s00497-021-00415-2
Cédric Schindfessel, Zofia Drozdowska, Len De Mooij, Danny Geelen
{"title":"Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress.","authors":"Cédric Schindfessel, Zofia Drozdowska, Len De Mooij, Danny Geelen","doi":"10.1007/s00497-021-00415-2","DOIUrl":"https://doi.org/10.1007/s00497-021-00415-2","url":null,"abstract":"<p><strong>Key message: </strong>Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"243-253"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00415-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38937252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-09-01Epub Date: 2021-05-21DOI: 10.1007/s00497-021-00411-6
Agnieszka A Golicz, Annapurna D Allu, Wei Li, Neeta Lohani, Mohan B Singh, Prem L Bhalla
{"title":"A dynamic intron retention program regulates the expression of several hundred genes during pollen meiosis.","authors":"Agnieszka A Golicz, Annapurna D Allu, Wei Li, Neeta Lohani, Mohan B Singh, Prem L Bhalla","doi":"10.1007/s00497-021-00411-6","DOIUrl":"https://doi.org/10.1007/s00497-021-00411-6","url":null,"abstract":"<p><strong>Key message: </strong>Intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during early stages of pollen development. To improve our understanding of the gene regulatory mechanisms that drive developmental processes, we performed a genome-wide study of alternative splicing and isoform switching during five key stages of pollen development in field mustard, Brassica rapa. Surprisingly, for several hundred genes (12.3% of the genes analysed), isoform switching results in stage-specific expression of intron-retaining transcripts at the meiotic stage of pollen development. In such cases, we report temporally regulated switching between expression of a canonical, translatable isoform and an intron-retaining transcript that is predicted to produce a truncated and presumably inactive protein. The results suggest a new pervasive mechanism underlying modulation of protein levels in a plant developmental program. The effect is not based on gene expression induction but on the type of transcript produced. We conclude that intron retention is a stage-specific mechanism of functional attenuation of a subset of co-regulated, functionally related genes during meiosis, especially genes related to ribosome biogenesis, mRNA transport and nuclear envelope architecture. We also propose that stage-specific expression of a non-functional isoform of Brassica rapa BrSDG8, a non-redundant member of histone methyltransferase gene family, linked to alternative splicing regulation, may contribute to the intron retention observed.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"225-242"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00411-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39018226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-09-01Epub Date: 2021-06-24DOI: 10.1007/s00497-021-00423-2
Takuya Morimoto, Yuto Kitamura, Koji Numaguchi, Akihiro Itai
{"title":"Characterization of transcriptomic response in ovules derived from inter-subgeneric hybridization in Prunus (Rosaceae) species.","authors":"Takuya Morimoto, Yuto Kitamura, Koji Numaguchi, Akihiro Itai","doi":"10.1007/s00497-021-00423-2","DOIUrl":"https://doi.org/10.1007/s00497-021-00423-2","url":null,"abstract":"<p><strong>Key message: </strong>Characterization of hybrid seed failure in Prunus provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in plant species. Postzygotic hybrid incompatibility resulting from a cross between different species involves complex mechanisms occurring at various developmental stages. Embryo arrest, followed by seed abortion, is the first stage of such incompatibility reactions and inhibits hybrid seed development. In Prunus, a rosaceous woody species, some interspecific crosses result in fruit drop during the early stage of fruit development, in which inferior seed development may be accounted for the observed hybrid incompatibility. In this study, we investigated ovule development and the transcriptomes of developing ovules in inter-subgeneric crosses of Prunus. We conducted a cross of Prunus mume (subgenus Prunus), pollinated by P. persica (subgenus Amygdalus), and found that ovule and seed coat degeneration occurs before fruit drop. Transcriptome analysis identified differentially expressed genes enriched in several GO pathways, including organelle development, stimulus response, and signaling. Among these pathways, the organelle-related genes were actively regulated during ovule development, as they showed higher expression in the early stage of interspecific crosses and declined in the later stage, suggesting that the differential regulation of organelle function may induce the degeneration of hybrid ovules. Additionally, genes related to ovule and seed coat development, such as genes encoding AGL-like and auxin response, were differentially regulated in Prunus interspecific crosses. Our results provide histological and molecular information on hybrid seed abortion in Prunus that could be utilized to develop new hybrid crops. Additionally, we compared and discussed transcriptome responses to hybrid seed failure in Prunus and other plant species, which provides insight into conserved or lineage-specific hybrid incompatibility mechanisms in some plant species.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 3","pages":"255-266"},"PeriodicalIF":3.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00423-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39022586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-06-01Epub Date: 2021-01-25DOI: 10.1007/s00497-021-00403-6
Alexandra Podolyan, Oksana Luneva, Ekaterina Klimenko, Maria Breygina
{"title":"Oxygen radicals and cytoplasm zoning in growing lily pollen tubes.","authors":"Alexandra Podolyan, Oksana Luneva, Ekaterina Klimenko, Maria Breygina","doi":"10.1007/s00497-021-00403-6","DOIUrl":"https://doi.org/10.1007/s00497-021-00403-6","url":null,"abstract":"<p><strong>Key message: </strong>Differential modulation of ROS content of the microenvironment (O ¯/MnTMPP/OH·) affects growth speed and morphology in lily pollen tubes. Oxygen radicals influence ionic zoning: membrane potential and pH gradients. Recently, redox-regulation of tip growth has been extensively studied, but differential sensitivity of growing cells to particular ROS and their subcellular localization is still unclear. Here, we used specific dyes to provide mapping of H<sub>2</sub>O<sub>2</sub> and O<sup>·</sup><sub>2</sub>¯ in short and long pollen tubes. We found apical accumulation of H<sub>2</sub>O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>-producing organelles in the shank that were not colocalized with O<sup>·</sup><sub>2</sub>¯-producing mitochondria. Differential modulation of ROS content of the germination medium affected both growth speed and pollen tube morphology. Oxygen radicals affected ionic zoning: membrane potential and pH gradients. OH· caused depolarization all along the tube while O<sup>·</sup><sub>2</sub>¯ provoked hyperpolarization and cytoplasm alkalinization. O<sup>·</sup><sub>2</sub>¯accelerated growth and reduced tube diameter, indicating that this ROS can be considered as pollen tube growth stimulator. Serious structural disturbances were observed upon exposure to OH· and ROS quencher MnTMPP: pollen tube growth slowed down and ballooned tips formed in both cases, but OH· affected membrane transport and organelle distribution as well. OH·, thus, can be considered as a negative regulator of pollen tube growth. Pollen tubes, in turn, are able to reduce OH· concentration, which was assessed by electron paramagnetic resonance spectroscopy (EPR).</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 2","pages":"103-115"},"PeriodicalIF":3.4,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00403-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38858400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant ReproductionPub Date : 2021-06-01Epub Date: 2021-03-10DOI: 10.1007/s00497-021-00406-3
Pranjal Yadava, Saleh Tamim, Han Zhang, Chong Teng, Xue Zhou, Blake C Meyers, Virginia Walbot
{"title":"Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutant ocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers.","authors":"Pranjal Yadava, Saleh Tamim, Han Zhang, Chong Teng, Xue Zhou, Blake C Meyers, Virginia Walbot","doi":"10.1007/s00497-021-00406-3","DOIUrl":"https://doi.org/10.1007/s00497-021-00406-3","url":null,"abstract":"<p><strong>Key message: </strong>Maize Outer cell layer 4 (ocl4) encodes an HD-ZIP IV transcription factor required for robust male fertility and 21-nt phasiRNA biogenesis. ocl4 fertility is favored in warm conditions, and phasiRNAs are partially restored. Environment-sensitive male-sterile plants have been described before and can result from different molecular mechanisms and biological processes, but putative environment-conditioned, transgenerational rescue of their male fertility is a rather new mystery. Here, we report a derivative line of the male-sterile outer cell layer 4 (ocl4) mutant of maize, in which fertility was restored and perpetuated over several generations. Conditioned fertile ocl4 anthers exhibit the anatomical abnormality of a partially duplicated endothecial layer, just like their sterile counterparts. We profiled the dynamics of phased, small interfering RNAs (phasiRNAs) during pre-meiotic development in fully sterile and various grades of semi-fertile ocl4 anthers. The conditioned fertile anthers accumulated significantly higher 21-nt phasiRNAs compared to ocl4 sterile samples, suggesting a partial restoration of phasiRNAs in conditioned fertility. We found that the biogenesis of 21-nt phasiRNAs is largely dependent on Ocl4 at three key steps: (1) production of PHAS precursor transcripts, (2) expression of miR2118 that modulates precursor processing, and (3) accumulation of 21-nt phasiRNAs.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"34 2","pages":"117-129"},"PeriodicalIF":3.4,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00406-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25453333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}