Andrea Tovar-Aguilar, Jianfei Zhao, Scott Poethig, Stewart Gillmor
{"title":"Abnormal hypophyseal and suspensor divisions in Arabidopsis dcl1 embryos are not attributable to a single miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene, but likely involve redundant genetic pathways and/or modulation by genetic background.","authors":"Andrea Tovar-Aguilar, Jianfei Zhao, Scott Poethig, Stewart Gillmor","doi":"10.1007/s00497-025-00531-3","DOIUrl":"10.1007/s00497-025-00531-3","url":null,"abstract":"<p><strong>Key message: </strong>Loss of SPL10 and SPL11 increases penetrance of abnormal phenotypes in dcl1 embryos. The first division of the Arabidopsis zygote is asymmetric, resulting in an apical cell lineage that generates most of the embryo proper, and a basal cell lineage that produces the root meristem and the extraembryonic suspensor. Loss of function mutations in the microRNA processing enzyme genes DICER-LIKE 1 (DCL1) and SERRATE (SE) show cell division defects in the embryo proper, hypophyseal cell, and suspensor. Previous transcriptome analyses showed that the microRNA156-targeted transcription factor genes SQUAMOSA PROMOTER BINDING PROTEIN-LIKE2 (SPL2), SPL3 and SPL11 were upregulated in both globular stage dcl1 and se embryos, while SPL10 was upregulated in dcl1. It was previously proposed that upregulation of SPL10 and SPL11 could explain some abnormal phenotypes in dcl1 embryos. In this work, we used T-DNA and CRISPR-Cas9-induced loss of function alleles to further explore the function of SPL2, SPL3, SPL10 and SPL11 in early embryogenesis and their contribution to the dcl1 phenotype. On their own, spl2, spl3, spl10, and spl11 single mutants and an spl10 spl11 double mutant showed no abnormal cell divisions in early embryogenesis. In the dcl1/+ background, loss of function of SPL2 or SPL3 did not change the proportion of cell division defects in hypophyseal cells or suspensors observed in dcl1/+. Loss of spl10 or spl11 in dcl1/+ resulted in a slight decrease or increase (respectively) in the penetrance of abnormal suspensor divisions in heart stage embryos, while the spl10 spl11 double mutant caused a small increase in the penetrance of abnormal hypophyseal divisions in dcl1 embryos. The differences between our results and previous studies are likely due to genetic redundancy of miR156-targeted SPL genes, variable environmental conditions or the effect of genetic background on the penetrance of the dcl1 phenotype. In the future, analysis of higher order mutations in SPL and MIR156 genes will help to better understand the role of these important developmental regulators in early embryo development.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 4","pages":"20"},"PeriodicalIF":2.4,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12507998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145253694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Meiotic cytokinesis defects in cultured Arabidopsis flowers induce diploid microspores.","authors":"Huiqi Fu, Yuting Chen, Xueying Cui, Huishan He, Jingru Wang, Chong Wang, Ziming Ren, Bing Liu","doi":"10.1007/s00497-025-00529-x","DOIUrl":"https://doi.org/10.1007/s00497-025-00529-x","url":null,"abstract":"<p><strong>Key message: </strong>Cultured Arabidopsis flowers inmedium produce diploid microspores due to occurrence of defective meiotic cytokinesis, which can be partially rescued by anexogenous application of sucrose. Live-imaging microscopy technology has been increasingly applied for meiosis study in plants, which largely relies on the set up of a healthy ex vivo culture system for inflorescences ensuring that the captured chromosomes dynamics approaches the natural features of meiosis. Here, we report that Arabidopsis thaliana flowers cultivated in a culture medium (CCM) composed of the half-strength Murashige and Skoog basal salt, MES, Myo-inositol, sucrose and agar produce diploid microspores due to occurrence of meiotic restitution. Cytological studies revealed adjacent nuclei distribution and incomplete cytokinesis at late meiosis II in meiocytes within the CCM flowers. Immunolocalization of α-tubulin and the microtubule-associated protein MAP65-3 showed that the orientation of spindles at metaphase II and the organization of radial microtubule arrays at the tetrad stage are interfered, which explains the production of meiotically-restituted microspores. Moreover, the CCM flowers showed a gradually impaired expression of Aborted Microspores (AMS), a key transcription factor regulating tapetum development and meiotic cytokinesis. Interestingly, an increased supply of sucrose or its metabolite fructose in culture medium promoted the expression of AMS and partially rescued haploid microspore formation in the CCM flowers. Taken together, this study suggests a role of sucrose in facilitating meiotic cytokinesis and gametophytic ploidy stability in plants.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 4","pages":"19"},"PeriodicalIF":2.4,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145126490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia L Seitz, Li-Jia Qu, Thomas Dresselhaus, Liang-Zi Zhou
{"title":"Spatial organization and trafficking dynamics of ANX/BUPS-RALF-LLG signaling complexes during pollen tube growth.","authors":"Patricia L Seitz, Li-Jia Qu, Thomas Dresselhaus, Liang-Zi Zhou","doi":"10.1007/s00497-025-00528-y","DOIUrl":"10.1007/s00497-025-00528-y","url":null,"abstract":"","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 3","pages":"18"},"PeriodicalIF":2.4,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144977648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BONOBO transcription factors positively regulate STICKY GENERATIVE CELL for generative cell internalisation in Arabidopsis.","authors":"Sung-Aeong Oh, Soon Ki Park","doi":"10.1007/s00497-025-00527-z","DOIUrl":"10.1007/s00497-025-00527-z","url":null,"abstract":"<p><strong>Key message: </strong>Generative cell internalisation establishes distinctive 'cell-within-a-cell' pollen organization in angiosperms. Comparative and transgenic expression analyses provide valuable insights into the cytological and genetic regulation underlying generative cell internalisation in Arabidopsis. For double fertilisation in flowering plants, a three-celled male gametophyte (pollen grain) delivers two non-motile sperm cells to the female gametes through a rapidly elongating pollen tube. This process is facilitated by a distinctive'cell-within-a-cell' pollen organisation, where the smaller generative cell becomes internalised into the larger vegetative cytoplasm through precisely regulated morphogenetic process and callose dynamics. However, the genetic mechanisms underlying generative cell internalisation remain unclear. Therefore, this study aims to comparatively analyse Arabidopsis wild-type with two different mutants that exhibit immobilised generative cells from the loss-of-function of DUF707 STICKY GENERATIVE CELL (SGC) and bHLH transcription factors BONOBO (BNB1) and BNB2, respectively. The results show that wild-type generative cells internalise through four successive steps. In contrast, bnb1;bnb2 mutants fail to progress to step 3 due to incomplete dissolution of the hemispherical callose and sgc-1 mutant proceeds to step 3 but arrests before step 4 with the intine-side callose dissolution disturbed. Moreover, transgenic analyses employing SGC promoter reporters and various BNB expression constructs revealed that SGC expression is positively regulated by BNB transcription factors. These findings enhance the understanding of the cytological and genetic regulation involving BNB transcription factors and downstream components, including SGC, during generative cell internalisation.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 3","pages":"17"},"PeriodicalIF":2.4,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144621056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sorel V Yimga Ouonkap, Yahir Oseguera, Bryce Okihiro, Mark A Johnson
{"title":"Semi-automated high content analysis of pollen performance using tubetracker.","authors":"Sorel V Yimga Ouonkap, Yahir Oseguera, Bryce Okihiro, Mark A Johnson","doi":"10.1007/s00497-025-00526-0","DOIUrl":"10.1007/s00497-025-00526-0","url":null,"abstract":"<p><strong>Key message: </strong>TubeTracker provides a method to partially automate analysis of pollen tube growth using live imaging. Pollen function is critical for successful plant reproduction and crop productivity and it is important to develop accessible methods to quantitatively analyze pollen performance to enhance reproductive resilience. Here we introduce TubeTracker as a method to quantify key parameters of pollen performance such as, time to pollen grain germination, pollen tube tip velocity and maintenance of pollen tube integrity. TubeTracker integrates manual and automatic image processing routines and the graphical interface allows the user to interact with the software to make manual corrections of automated steps. TubeTracker does not depend on training data sets required to implement machine learning approaches and thus can be immediately implemented using readily available imaging systems. Furthermore, TubeTracker is an excellent tool to produce the pollen performance data sets necessary to take advantage of emerging AI-based methods to fully automate analysis. We tested TubeTracker and found it to be accurate in measuring pollen tube germination and pollen tube tip elongation across multiple cultivars of tomato.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 3","pages":"16"},"PeriodicalIF":2.4,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144303550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The regulation of vacuole morphology in stigma papilla cells is involved in water transfer to pollen in Arabidopsis thaliana.","authors":"Kazuki Fukushima, Maki Hayashi, Masao Watanabe","doi":"10.1007/s00497-025-00525-1","DOIUrl":"10.1007/s00497-025-00525-1","url":null,"abstract":"<p><strong>Key message: </strong>The stigma papilla cells of Arabidopsis thaliana control water transport to pollen by regulating the morphology of vacuoles in papilla cells after pollination. Pollen hydration is the first crucial response after pollination for successful fertilization. In the Brassicaceae family, papilla cells on the stigma supply water to pollen. In pollinated papilla cells, cellular responses essential for pollen hydration are induced. However, it remains unclear how papilla cells release water from inside the cells to the pollen. Here, we set up a live-cell imaging system for observing vacuole dynamics in Arabidopsis thaliana papilla cells and investigated the role of vacuole morphology in these cells in the regulation of water transfer to pollen. Before pollination, vacuoles in the papilla cells changed their morphology through fusion and constriction; however, after pollination, they formed larger vacuoles and exhibited reduced movement. Additionally, when the morphological variation of vacuoles in the papilla cells was inhibited by wortmannin treatment, the pollen hydration rate decreased in a concentration-dependent manner. In contrast, the vacuoles tended to be less constricted even before pollination and showed less variation than wild-type after pollination in Rho-like GTPase from plants 2 (ROP2) mutant papilla cells, where the pollen hydration rate is faster. We propose that the regulation of vacuole morphology in papilla cells is involved in water transfer to pollen during pollination.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 2","pages":"15"},"PeriodicalIF":2.9,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subramanian Sankaranarayanan, Sowmiya D Venkatesan, Thomas C Davis, Sharon A Kessler
{"title":"ROS regulation of stigma papillae growth and maturation in Arabidopsis thaliana.","authors":"Subramanian Sankaranarayanan, Sowmiya D Venkatesan, Thomas C Davis, Sharon A Kessler","doi":"10.1007/s00497-025-00524-2","DOIUrl":"10.1007/s00497-025-00524-2","url":null,"abstract":"<p><strong>Key message: </strong>Superoxide accumulates during early stigma papillae growth stages in Arabidopsis. Highly specialized stigma papillae cells play a critical role in plant reproduction. Their main purpose is to catch and interact with pollen, to mediate compatibility responses, to regulate pollen germination, and to guide pollen tubes to the transmitting tract so that the sperm cells carried in the pollen can be delivered to the female gametophyte to achieve double fertilization. In Arabidopsis thaliana, the stigma consists of single-celled stigma papillae that emerge from the apex of the fused carpels. Despite their critical function in plant reproduction, the molecular mechanisms that govern growth and maturation of stigma papillae remain poorly understood. Reactive Oxygen Species (ROS) have been implicated in stigma receptivity, but their roles in papillae development are less explored. Here we show that reactive oxygen species (ROS) also play different roles in stigma papillae development, with superoxide accumulating during the initiation and growth phase and hydrogen peroxide accumulating in mature papillae that are receptive to pollen. Reducing superoxide levels in the stigma by pharmacological treatments or over-expressing superoxide dismutase enzymes under an early stigma promoter inhibited stigma papillae growth, suggesting that ROS homeostasis is critical to papillae growth and differentiation for optimal pollination.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 2","pages":"14"},"PeriodicalIF":2.9,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144227503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anisotropic diffuse growth in Arabidopsis thaliana stigma papillae.","authors":"Thomas C Davis, Sharon A Kessler","doi":"10.1007/s00497-025-00523-3","DOIUrl":"10.1007/s00497-025-00523-3","url":null,"abstract":"<p><strong>Key message: </strong>Arabidopsis stigma papillae grow by a diffuse growth mechanism rather than by tip growth. In angiosperms, the stigma is the first point of contact between the pollen (male) and pistil (female) during pollination. The stigma facilitates pollen capture and adhesion, compatibility responses, pollen germination, and pollen tube guidance to the transmitting tract. In Arabidopsis thaliana, the stigma is composed of single-celled stigma papillae that initiate from the apex of the carpels. Despite their critical function in plant reproduction, little is known about the cell and molecular mechanisms that govern stigma papillae growth and development. Using morphometric analysis of stigma papillae growth during different stages of floral development, we show that A. thaliana stigma papillae grow via a diffuse growth mechanism. Consistent with this conclusion, several mutants with reduced growth anisotropy in vegetative tissues due to defective cellulose or microtubule function likewise reduce anisotropy in stigma papillae.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 2","pages":"13"},"PeriodicalIF":2.9,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annette Becker, Xia Chen, Thomas Dresselhaus, Nora Gutsche, Stefanie J Müller-Schüssele, Stefanie Sprunck, Günter Theißen, Sophie de Vries, Sabine Zachgo
{"title":"Sexual reproduction in land plants: an evolutionary perspective.","authors":"Annette Becker, Xia Chen, Thomas Dresselhaus, Nora Gutsche, Stefanie J Müller-Schüssele, Stefanie Sprunck, Günter Theißen, Sophie de Vries, Sabine Zachgo","doi":"10.1007/s00497-025-00522-4","DOIUrl":"10.1007/s00497-025-00522-4","url":null,"abstract":"<p><strong>Key message: </strong>We link key aspects of land plant reproductive evolution and detail how successive molecular changes leading to novel tissues and organs require co-evolution of communication systems between tissues. The transition of water-dependent reproduction of algae to mechanisms with very limited water dependence in many land plant lineages allowed plants to colonize diverse terrestrial environments, leading to the vast variety of extant plant species. The emergence of modified cell types, novel tissues, and organs enabled this transition; their origin is associated with the co-evolution of novel or adapted molecular communication systems and gene regulatory networks. In the light of an increasing number of genome sequences in combination with the establishment of novel genetic model organisms from diverse green plant lineages, our knowledge and understanding about the origin and evolution of individual traits that arose in a concerted way increases steadily. For example, novel members of gene families in signaling pathways emerged for communication between gametes and gametophytes with additional tissues surrounding the gametes. Here, we provide a comprehensive overview on the origin and evolution of reproductive novelties such as pollen grains, immobile sperms, ovules and seeds, carpels, gamete/gametophytic communication systems, double fertilization, and the molecular mechanisms that have arisen anew or have been co-opted during evolution, including but not limited to the incorporation of phytohormones, reactive oxygen species and redox signaling as well as small RNAs in regulatory modules that contributed to the evolution of land plant sexual reproduction.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 2","pages":"12"},"PeriodicalIF":2.9,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143998289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Haustorial processes during the female gametophyte formation in Rosularia pallida (Schott & Kotschy) Stapf (Crassulaceae).","authors":"Emilia Brzezicka, Małgorzata Kozieradzka-Kiszkurno","doi":"10.1007/s00497-025-00521-5","DOIUrl":"10.1007/s00497-025-00521-5","url":null,"abstract":"<p><strong>Key message: </strong>Ultrastructural and cytochemical analyses of the megaspore, embryo sac, and synergid haustoria reveal their roles in nutrition, contributing to the successful development of the megagametophyte in R. pallida. In this paper, we present the first cytochemical and ultrastructural analysis of the megaspores, embryo sac, and synergid haustoria in Rosularia pallida (Schott & Kotschy) Stapf (Crassulaceae) are presented. The haustoria in the ovule of R. pallida primarily function to provide nutrition during megasporogenesis and megagametogenesis. Cytochemical staining reveals a significant increase in the accumulation of insoluble polysaccharides, lipids, and proteins within the megaspores and embryo sac. This increase occurs alongside the progressive degradation of nucellar cells and the growth of haustoria towards the integuments. The direction of haustorial growth within sporophyte tissues and the distribution of nutrients within the ovule complement each other, collectively contributing to efficient nutrition for the developing female gametophyte. Callose is present in the walls of both the megaspores and their haustoria. The functional megaspore (FM) haustorium is the only one that extends beyond the nucellus into the integuments during megasporogenesis. The disappearance of callose in the micropylar portion of the FM haustorium enables apoplasmic transport, particularly in this region. These findings suggest that the FM haustorium supports the development of a specific megaspore in the tetrad, indirectly influencing FM selection through nutrient provision. Furthermore, the removal of callose on the chalazal side of the tetrad likely facilitates the development of the embryo sac from the chalazal megaspore. Ultrastructural analyses of the megaspore, embryo sac, and synergid haustoria reveal the presence of transfer-wall ingrowths. No plasmodesmata were detected in the haustorial walls. Additionally, ultrastructural observations of the synergids indicate that their haustorium significantly elongates toward the micropyle and becomes metabolically active.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 2","pages":"11"},"PeriodicalIF":2.9,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}