用tubetracker半自动化高含量花粉分析。

IF 2.4 4区 生物学 Q2 PLANT SCIENCES
Sorel V Yimga Ouonkap, Yahir Oseguera, Bryce Okihiro, Mark A Johnson
{"title":"用tubetracker半自动化高含量花粉分析。","authors":"Sorel V Yimga Ouonkap, Yahir Oseguera, Bryce Okihiro, Mark A Johnson","doi":"10.1007/s00497-025-00526-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>TubeTracker provides a method to partially automate analysis of pollen tube growth using live imaging. Pollen function is critical for successful plant reproduction and crop productivity and it is important to develop accessible methods to quantitatively analyze pollen performance to enhance reproductive resilience. Here we introduce TubeTracker as a method to quantify key parameters of pollen performance such as, time to pollen grain germination, pollen tube tip velocity and maintenance of pollen tube integrity. TubeTracker integrates manual and automatic image processing routines and the graphical interface allows the user to interact with the software to make manual corrections of automated steps. TubeTracker does not depend on training data sets required to implement machine learning approaches and thus can be immediately implemented using readily available imaging systems. Furthermore, TubeTracker is an excellent tool to produce the pollen performance data sets necessary to take advantage of emerging AI-based methods to fully automate analysis. We tested TubeTracker and found it to be accurate in measuring pollen tube germination and pollen tube tip elongation across multiple cultivars of tomato.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"38 3","pages":"16"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-automated high content analysis of pollen performance using tubetracker.\",\"authors\":\"Sorel V Yimga Ouonkap, Yahir Oseguera, Bryce Okihiro, Mark A Johnson\",\"doi\":\"10.1007/s00497-025-00526-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>TubeTracker provides a method to partially automate analysis of pollen tube growth using live imaging. Pollen function is critical for successful plant reproduction and crop productivity and it is important to develop accessible methods to quantitatively analyze pollen performance to enhance reproductive resilience. Here we introduce TubeTracker as a method to quantify key parameters of pollen performance such as, time to pollen grain germination, pollen tube tip velocity and maintenance of pollen tube integrity. TubeTracker integrates manual and automatic image processing routines and the graphical interface allows the user to interact with the software to make manual corrections of automated steps. TubeTracker does not depend on training data sets required to implement machine learning approaches and thus can be immediately implemented using readily available imaging systems. Furthermore, TubeTracker is an excellent tool to produce the pollen performance data sets necessary to take advantage of emerging AI-based methods to fully automate analysis. We tested TubeTracker and found it to be accurate in measuring pollen tube germination and pollen tube tip elongation across multiple cultivars of tomato.</p>\",\"PeriodicalId\":51297,\"journal\":{\"name\":\"Plant Reproduction\",\"volume\":\"38 3\",\"pages\":\"16\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00497-025-00526-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-025-00526-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

关键信息:TubeTracker提供了一种使用实时成像来部分自动化分析花粉管生长的方法。花粉功能对植物的成功繁殖和作物生产力至关重要,因此建立定量分析花粉性能的方法对提高植物的生殖弹性具有重要意义。在这里,我们介绍TubeTracker作为一种方法来量化花粉性能的关键参数,如花粉粒萌发时间、花粉管尖端速度和花粉管完整性的维持。TubeTracker集成了手动和自动图像处理程序,图形界面允许用户与软件交互,对自动步骤进行手动修正。TubeTracker不依赖于实施机器学习方法所需的训练数据集,因此可以使用现成的成像系统立即实施。此外,TubeTracker是一个很好的工具,可以生成花粉性能数据集,这些数据集是利用新兴的基于人工智能的方法实现全自动分析所必需的。我们对TubeTracker进行了测试,发现它可以准确地测量多个番茄品种的花粉管萌发和花粉管尖端伸长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-automated high content analysis of pollen performance using tubetracker.

Key message: TubeTracker provides a method to partially automate analysis of pollen tube growth using live imaging. Pollen function is critical for successful plant reproduction and crop productivity and it is important to develop accessible methods to quantitatively analyze pollen performance to enhance reproductive resilience. Here we introduce TubeTracker as a method to quantify key parameters of pollen performance such as, time to pollen grain germination, pollen tube tip velocity and maintenance of pollen tube integrity. TubeTracker integrates manual and automatic image processing routines and the graphical interface allows the user to interact with the software to make manual corrections of automated steps. TubeTracker does not depend on training data sets required to implement machine learning approaches and thus can be immediately implemented using readily available imaging systems. Furthermore, TubeTracker is an excellent tool to produce the pollen performance data sets necessary to take advantage of emerging AI-based methods to fully automate analysis. We tested TubeTracker and found it to be accurate in measuring pollen tube germination and pollen tube tip elongation across multiple cultivars of tomato.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Reproduction
Plant Reproduction PLANT SCIENCES-REPRODUCTIVE BIOLOGY
CiteScore
6.30
自引率
2.90%
发文量
19
期刊介绍: Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信