Mohammad Aslam, Xiaoyi Huang, Maokai Yan, Zeyuan She, Xiangyu Lu, Beenish Fakher, Yingzhi Chen, Gang Li, Yuan Qin
{"title":"TRM61 is essential for Arabidopsis embryo and endosperm development.","authors":"Mohammad Aslam, Xiaoyi Huang, Maokai Yan, Zeyuan She, Xiangyu Lu, Beenish Fakher, Yingzhi Chen, Gang Li, Yuan Qin","doi":"10.1007/s00497-021-00428-x","DOIUrl":null,"url":null,"abstract":"<p><p>Post-transcriptional modifications of tRNA molecules play crucial roles in gene expression and protein biosynthesis. Across the genera, methylation of tRNAs at N<sup>1</sup> of adenosine 58 (A58) by AtTRM61/AtTRM6 complex plays a critical role in maintaining the stability of initiator methionyl-tRNA (tRNA<sub>i</sub><sup>Met</sup>). Recently, it was shown that mutation in AtTRM61 or AtTRM6 leads to seed abortion. However, a detailed study about the AtTRM61/AtTRM6 function in plants remains vague. Here, we found that AtTRM61 has a conserved functional structure and possesses conserved binding motifs for cofactor S-adenosyl-L-methionine (AdoMet). Mutations of the complex subunits AtTRM61/AtTRM6 result in embryo and endosperm developmental defects. The endosperm and embryo developmental defects were conditionally complemented by Attrm61-1/ + FIS2pro::AtTRM61 and Attrm61-1/ + ABI3pro::AtTRM61 indicating that AtTRM61 is required for early embryo and endosperm development. Besides, the rescue of the fertility defects in trm61/ + by overexpression of initiator tRNA suggests that AtTRM61 mutation could diminish tRNA<sub>i</sub><sup>Met</sup> stability. Moreover, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, we showed that AtMPK4 physically interacts with AtTRM61. The data presented here suggest that AtTRM61 has a conserved structure and function in Arabidopsis. Also, AtTRM61 may be required for tRNA<sub>i</sub><sup>Met</sup> stability, embryo and endosperm development.</p>","PeriodicalId":51297,"journal":{"name":"Plant Reproduction","volume":"35 1","pages":"31-46"},"PeriodicalIF":2.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00497-021-00428-x","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-021-00428-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Post-transcriptional modifications of tRNA molecules play crucial roles in gene expression and protein biosynthesis. Across the genera, methylation of tRNAs at N1 of adenosine 58 (A58) by AtTRM61/AtTRM6 complex plays a critical role in maintaining the stability of initiator methionyl-tRNA (tRNAiMet). Recently, it was shown that mutation in AtTRM61 or AtTRM6 leads to seed abortion. However, a detailed study about the AtTRM61/AtTRM6 function in plants remains vague. Here, we found that AtTRM61 has a conserved functional structure and possesses conserved binding motifs for cofactor S-adenosyl-L-methionine (AdoMet). Mutations of the complex subunits AtTRM61/AtTRM6 result in embryo and endosperm developmental defects. The endosperm and embryo developmental defects were conditionally complemented by Attrm61-1/ + FIS2pro::AtTRM61 and Attrm61-1/ + ABI3pro::AtTRM61 indicating that AtTRM61 is required for early embryo and endosperm development. Besides, the rescue of the fertility defects in trm61/ + by overexpression of initiator tRNA suggests that AtTRM61 mutation could diminish tRNAiMet stability. Moreover, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, we showed that AtMPK4 physically interacts with AtTRM61. The data presented here suggest that AtTRM61 has a conserved structure and function in Arabidopsis. Also, AtTRM61 may be required for tRNAiMet stability, embryo and endosperm development.
期刊介绍:
Plant Reproduction (formerly known as Sexual Plant Reproduction) is a journal devoted to publishing high-quality research in the field of reproductive processes in plants. Article formats include original research papers, expert reviews, methods reports and opinion papers. Articles are selected based on significance for the field of plant reproduction, spanning from the induction of flowering to fruit development. Topics incl … show all