Mohammad Foteh Ali, Paige Brown, John Thomas, Montserrat Salmerόn, Tomokazu Kawashima
{"title":"Effect of assimilate competition during early seed development on the pod and seed growth traits in soybean.","authors":"Mohammad Foteh Ali, Paige Brown, John Thomas, Montserrat Salmerόn, Tomokazu Kawashima","doi":"10.1007/s00497-022-00439-2","DOIUrl":null,"url":null,"abstract":"<p><p>Although the seed remains small in size during the initial stage of seed development (the lag phase), several studies indicate that environment and assimilate supply level manipulations during the lag phase affect the final seed size. However, the manipulations were not only at the lag phase, making it difficult to understand the specific role of the lag phase in final seed size determination. It also remained unclear whether environmental cues are sensed by plants and regulate seed development or if it is simply the assimilate supply level, changed by the environment, that affects the subsequent seed development. We investigated soybean (Glycine max L. Merr.) seed phenotypes grown in a greenhouse using different source-sink manipulations (shading and removal of flowers and pods) during the lag phase. We show that assimilate supply is the key factor controlling flower and pod abortion and that the assimilate supply during the lag phase affects the subsequent potential seed growth rate during the seed filling phase. In response to low assimilate supply, plants adjust flower/pod abortion and lag phase duration to supply the minimum assimilate per pod/seed. Our results provide insight into the mechanisms whereby the lag phase is crucial for seed development and final seed size potential, essential parameters that determine yield.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00497-022-00439-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Although the seed remains small in size during the initial stage of seed development (the lag phase), several studies indicate that environment and assimilate supply level manipulations during the lag phase affect the final seed size. However, the manipulations were not only at the lag phase, making it difficult to understand the specific role of the lag phase in final seed size determination. It also remained unclear whether environmental cues are sensed by plants and regulate seed development or if it is simply the assimilate supply level, changed by the environment, that affects the subsequent seed development. We investigated soybean (Glycine max L. Merr.) seed phenotypes grown in a greenhouse using different source-sink manipulations (shading and removal of flowers and pods) during the lag phase. We show that assimilate supply is the key factor controlling flower and pod abortion and that the assimilate supply during the lag phase affects the subsequent potential seed growth rate during the seed filling phase. In response to low assimilate supply, plants adjust flower/pod abortion and lag phase duration to supply the minimum assimilate per pod/seed. Our results provide insight into the mechanisms whereby the lag phase is crucial for seed development and final seed size potential, essential parameters that determine yield.
虽然在种子发育的初始阶段(滞后期),种子的尺寸仍然很小,但一些研究表明,滞后期的环境和同化物供应水平会影响种子的最终尺寸。然而,这些操作并非只在滞后期进行,因此很难理解滞后期在最终种子大小决定中的具体作用。此外,环境线索是由植物感知并调节种子发育,还是仅仅是同化物供应水平受环境影响而改变,从而影响种子的后续发育也仍不清楚。我们研究了在温室中生长的大豆(Glycine max L. Merr.)种子的表型,在滞后期使用了不同的源-汇操作(遮光、摘除花和豆荚)。我们的研究表明,同化物供应是控制花和豆荚凋落的关键因素,而滞育期的同化物供应会影响种子灌浆期的潜在种子生长率。为了应对低同化物供应量,植物会调整花/荚果凋落和滞育期的持续时间,以便为每个荚果/种子提供最少的同化物。我们的研究结果让我们深入了解了滞育期对种子发育和最终种子大小潜力至关重要的机制,而种子大小潜力是决定产量的重要参数。