{"title":"Optimal Allocation and Sizing of Capacitor Banks in Distribution System to Reduce the Power Loss Using Beluga Whale Optimization","authors":"Sitotaw Mengesha Adal, Ermiyas Tesfakiros Reda","doi":"10.1155/2024/7837832","DOIUrl":"https://doi.org/10.1155/2024/7837832","url":null,"abstract":"<div>\u0000 <p>One portion of the distribution system is the distribution feeder. Buses carrying more loads and having long-distance route lines are significant problems due to the presence of power loss and the increase in the overall cost of the transportation process. Hence, the overall power loss minimization is taken as the major objective. The best sizing and allocation of capacitors in a bank in the distribution line are used to minimize the total loss. BWO technique is utilized in this optimization process. The backward-forward sweep load flow is used for the computation of the power flow in MATLAB. The sensitive buses have been chosen according to the factor of loss sensitivity (LSF) and using BWO. The validity of the test has been made on the standard IEEE 34 and 85 bus radial distribution system. The simulation results in the 34-bus radial system are much different from the results of PSO, GWO, WO, and IWO. In the 85-bus radial system, the results are seen with the outcomes of PSO, WO, and BFOA. In both cases, the results of the proposed technique are found to be better than the existing methods. Therefore, the result shows that BWO can be effective for future selection to improve large distribution networks by sizing and locating the capacitors optimally.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7837832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irfan Ali Channa, Dazi Li, Mohsin Ali Koondhar, Fida Hussain Dahri, Ibrahim Mahariq
{"title":"An Improved Machine Learning-Based Model for Detecting and Classifying PQDs with High Noise Immunity in Renewable-Integrated Microgrids","authors":"Irfan Ali Channa, Dazi Li, Mohsin Ali Koondhar, Fida Hussain Dahri, Ibrahim Mahariq","doi":"10.1155/2024/9118811","DOIUrl":"https://doi.org/10.1155/2024/9118811","url":null,"abstract":"<div>\u0000 <p>Recently, renewable energy sources integrated with microgrid (MG) networks have provided safe, secure, and reliable power supply to both utility and industrial purposes. Power quality disturbances (PQDs) seriously affect the performance of MG networks and reduce the lifecycle of numerous sensitive devices in MG networks. Hence, this paper presents a new approach to detect and classify the PQDs using discrete wavelet transform, multiresolution analysis, and optimized-kernel support vector machine. The obtained unique features from DWT-MRA are fed to train the well-known intelligent classifiers. In the optimized-kernel SVM model, computing power is enhanced for classifying multiple PQ events based on the local density and leave-one-out (LOO) algorithm. To get higher separation in feature space, the kernel width of each sample is estimated based on the local density. By using the LOO method, an improved grid search strategy is implemented to get the penalty parameter to achieve satisfactory results. Moreover, a typical MG network is simulated in MATLAB software considering the validation of the proposed technique to address the power quality issues in MG networks, and the results of the proposed method are compared with other conventional ML classifiers. The simulation results confirm that the proposed method is more effective and accurate than other intelligent classifiers.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9118811","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moussa Saadati Toularoud, Mohammad Khoshhal Rudposhti, Sajad Bagheri, Amir Hossein Salemi
{"title":"Enhancing Microgrid Voltage and Frequency Stability through Multilayer Interactive Control Framework","authors":"Moussa Saadati Toularoud, Mohammad Khoshhal Rudposhti, Sajad Bagheri, Amir Hossein Salemi","doi":"10.1155/2024/4933861","DOIUrl":"https://doi.org/10.1155/2024/4933861","url":null,"abstract":"<div>\u0000 <p>Microgrids (MGs) play a crucial role in modern power distribution systems, particularly in ensuring reliable and efficient energy supply, integrating renewable energy sources, and enhancing grid resilience. Voltage and frequency stability are paramount for MG operation, necessitating advanced control frameworks to regulate key parameters effectively. This research introduces a multilayer interactive control framework tailored for MGs utilizing distributed energy resources (DERs). The framework comprises primary control layers, integrating internal voltage and current controller loops, and secondary layers employing distributed finite-time control (DFTC) strategies. Through simulation studies and comparative analyses with traditional proportional-integral (PI) controllers, the effectiveness of DFTC controllers in reducing initial oscillations and improving stability is demonstrated. Major findings include the superior performance of DFTC controllers in stabilizing voltage and frequency parameters, optimizing power output, and enhancing overall operational efficiency. Additionally, insights into the operational dynamics of MG systems highlight the significance of advanced control strategies in mitigating fluctuations and ensuring system stability. Furthermore, the proposed method demonstrates significant efficacy improvements over conventional approaches. Voltage stability is enhanced with oscillation amplitudes less than 0.01 pu, active power control achieves a stable level of 0.93 pu, and frequency fluctuations are reduced to 0.004 Hz and effectively recovered to 0.002 Hz. These improvements suggest that the proposed method enhances system stability and control precision by approximately 95% compared to conventional methods, as it achieves much tighter control over voltage, active power levels, and frequency fluctuations.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4933861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Albe M. Bloul, Adel M. Sharaf, Hamed H. Aly, Jason Gu
{"title":"A Novel AC Green Plug Switched Filter Scheme for Low Impact Efficient V2G Battery Charging Stations","authors":"Albe M. Bloul, Adel M. Sharaf, Hamed H. Aly, Jason Gu","doi":"10.1155/2024/9609442","DOIUrl":"https://doi.org/10.1155/2024/9609442","url":null,"abstract":"<div>\u0000 <p>In this paper, a novel switched/modulated capacitor filter scheme is proposed for enhancing vehicle-to-house (V2G) battery-charging stations utilized in electric vehicles (EVs). The novel approach is tested on two controllers with a classical optimized PID controller. The technique, which employs modified multimode weighted charging modes for fast charging, improved power quality, and minimal inrush currents, results in reduced voltage transients on the DC side and less harmonics on the AC side. An intercoupled DC-AC capacitor interface that features dual complementary switching modes is used by the switched modulated filter as a way to provide optimal pulsing in both the tuned-arm filter and capacitive compensator modes of operations. This switched intercoupled AC-DC filter compensation approach leads to enhanced power usage in EVs, along with lower AC-DC voltage transients and inrush currents.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9609442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Secure Fault Identification Approach for MMC-HVDC Network","authors":"Kiran Rana, Monalisa Biswal, Nand Kishor, Richa Negi","doi":"10.1155/2024/7639847","DOIUrl":"https://doi.org/10.1155/2024/7639847","url":null,"abstract":"<div>\u0000 <p>In high voltage direct current (HVDC) systems, the occurrence of short circuits results in a rapid rise in line current, adversely affecting the interconnected alternating current (AC) grid. Particularly in voltage source-based multimodular converter (MMC) HVDC networks, such transients pose a significant threat to power converter units. Traditional relaying algorithms prove inadequate for safeguarding AC-DC-linked HVDC networks. Both the direct current (DC) and alternating current (AC) segments of such networks demand robust protection mechanisms. Signal processing-based techniques offer valuable insights during fault events, yet challenges such as noise interference, mode missing, and harmonics generation during faults persist, leading to erroneous conclusions. To address this, we introduce Synchro Squeezed Transform (SST) in this study to mitigate ambiguity in relaying algorithm decisions. SST facilitates the extraction of amplitude and effective instantaneous frequency of AC signals. The proposed method employs the Rényi entropy of time-frequency representation (TFR) as the primary logic, followed by the estimation of the spectrum-based Teager–Kaiser Energy Operator (TKEO) for DC signals as the secondary logic. These combined logics enable the identification of various AC and DC faults in Voltage Source Converter (VSC)-based bipolar HVDC networks. Simulation results, including comparisons with existing approaches, demonstrate the efficacy of the proposed methodology in enhancing fault detection and classification accuracy in AC-DC-linked HVDC networks.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7639847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Study of an Anomaly Detection System for Small Hydropower Data considering Multivariate Time Series","authors":"Bo Yang, Zhongliang Lyu, Hua Wei","doi":"10.1155/2024/8108861","DOIUrl":"https://doi.org/10.1155/2024/8108861","url":null,"abstract":"<div>\u0000 <p>Data anomaly detection in small hydropower stations is an important research area because it positively affects the reliability of optimal scheduling and subsequent analytical studies of small hydropower station clusters. Although many anomaly detection algorithms have been introduced in the data preprocessing stage in various research areas, there is still little research on effective and highly reliable anomaly detection systems for practical applications in small hydropower stations. Therefore, this paper proposes a real-time data anomaly detection system for small hydropower clusters (RDADS-SHC) considering multiple time series. It addresses the difficulties of timely detection, alerting, and management of real-time data anomalies (errors, omissions, and so on) in existing small hydropower stations. It proposes a real-time data anomaly detection algorithm for small hydropower stations integrated with the Z-score and dynamic time warping, which can detect and process abnormal information more accurately and efficiently, thereby improving the stability and reliability of data sampling. The paper proposes a Keepalived-based hot-standby RDADS-SHC deployment model with <i>m</i> (<i>m</i> ≥ 2) units. It can automatically remove and restart faulty services and switch to their standbys, which significantly improve the reliability of the proposed system, ensuring the safe and stable operation of related functional services. This paper can detect anomalous data more accurately, and the system is more stable and reliable in a cluster detection environment. The actual operation has shown that compared with existing anomaly detection systems, the architecture and algorithms proposed in this paper can detect anomalous data more accurately, and the system is more stable and reliable in the small hydropower cluster detection environment. It solves abnormal data management in small hydropower stations and provides reliable support for subsequent analysis and decision-making.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8108861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamel Djermouni, Ali Berboucha, Salah Tamalouzt, Djamel Ziane
{"title":"Voltage and Current Balancing of a Faulty Photovoltaic System Connected to Cascaded H-Bridge Multilevel Inverter","authors":"Kamel Djermouni, Ali Berboucha, Salah Tamalouzt, Djamel Ziane","doi":"10.1155/2024/6585584","DOIUrl":"https://doi.org/10.1155/2024/6585584","url":null,"abstract":"<div>\u0000 <p>A healthy operation of photovoltaic installations (similar to all electrical systems) is always limited by breakdown, degradation due to aging, or imbalance caused by weather conditions. In this context, producing the maximum energy possible with an acceptable form factor is a significant challenge for autonomous systems, especially those connected to the grid. In this paper, we have two main issues to address. The first is determining the maximum power point of an unbalanced photovoltaic field (due to a defect or nonuniform weather conditions affecting the photovoltaic generators). For such a system, the particle swarm optimization (PSO) algorithm remains highly effective because it can easily handle the existence of multiple maxima simultaneously to provide the best possible solution. The second challenge is managing the imbalance between the three phases of the photovoltaic system. In this context, the results of conducted studies propose two approaches to balance and maximize the power supplied by the photovoltaic generator and converters. In addition, the presence of a battery storage system plays dual roles: firstly, compensating the power fluctuations due to nonuniform operating conditions between phases, and secondly, ensuring system power supply during periods of no sunlight exposure. The proposed approaches take into account the constraints imposed on DC voltages and currents to ensure optimal integration with the multilevel inverter stage (cascaded H-bridge multilevel inverters). This is achieved through selective harmonic elimination control without the need for a filtering system. A comparative study between these two approaches will be conducted to assess their advantages and disadvantages. The battery-based storage system efficiently absorbs excess energy and provides energy during deficits, thanks to a flexible control mechanism that allows easy switching between different battery groups and phases.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6585584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Rotor Faults on Wind Turbine Shutdown or Continued Operation","authors":"Dariush Biazar, Hamid Khaloozadeh, Mehdi Siahi","doi":"10.1155/2024/1242311","DOIUrl":"https://doi.org/10.1155/2024/1242311","url":null,"abstract":"<div>\u0000 <p>The dynamics of wind turbine (WT) behavior and the identification of factors influencing its performance are both highly complex and challenging. Additionally, component damage, along with sensor and actuator failures, can lead to system faults that significantly reduce performance. Understanding these impacts provides control system designers with valuable insights to develop strategies for mitigating faults and enhancing WT performance. This study presents a novel evaluation of rotor fault effects on output power and measured variables in WTs using Monte Carlo simulation and sensitivity analysis. Through comprehensive simulation and numerical analysis, the faults with the greatest impact on WT performance are identified. The results of this research not only provide a better understanding of the WT performance during faults but also identify the significant effects of these faults on the performance of wind turbines and specifically identify and prioritize the main faults. These results are instrumental in improving control strategies, developing preventive maintenance programs, and offering practical solutions to reduce operational costs and extend the equipment’s useful life.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1242311","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed M. Alrashed, Aymen Flah, Masoud Dashtdar, Claude Ziad El-Bayeh, Mohamed F. Elnaggar
{"title":"Improving the Control Strategy of the DVR Compensator Based on an Adaptive Notch Filter with an Optimized PD Controller Using the IGWO Algorithm","authors":"Mohammed M. Alrashed, Aymen Flah, Masoud Dashtdar, Claude Ziad El-Bayeh, Mohamed F. Elnaggar","doi":"10.1155/2024/5097056","DOIUrl":"https://doi.org/10.1155/2024/5097056","url":null,"abstract":"<div>\u0000 <p>One of the objectives of electrical distribution networks is to provide customers with access to high-quality electricity. Because any disruptions in these systems result in voltage disorders, different devices are employed to offset these disruptions on consumers who are more susceptible. One of the most important and contemporary pieces of equipment that is connected in series with the network is dynamic voltage restoration (DVR), which shields delicate loads from network voltage issues by injecting the proper voltage. This article presents a DVR control scheme optimized with improved grey wolf optimization (IGWO) that uses a proportional derivative (PD) controller and adaptive notch filter (ANF). The output LC filter’s resistance has been removed, and the control system has actively engaged in oscillation damping in order to accelerate dynamic responsiveness and lower system losses. The major component of the voltage, which comprises its frequency, amplitude, and phase, is extracted using ANF. The capacitor current of the output filter in this structure is fed back to the control system and from the current mode control in the inner loop to boost stability. Owing to the occasionally complex dynamic behavior in distribution networks, particularly during a fault, the system’s frequency response has been altered and response speed has been accelerated using the PD controller. This kind of controller is distinguished by its accurate functioning in the presence of frequency deviations and its swifter dynamic reaction in the face of voltage swell and sag. In order to improve the THD and voltage sag indicators of the sensitive load, the PD coefficients were adjusted using the IGWO algorithm. As a consequence, the simulation results demonstrated that the suggested controller performed better than traditional controllers.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5097056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Home Energy Management Systems in Smart Cities Using Bacterial Foraging Algorithm and Deep Reinforcement Learning for Enhanced Renewable Energy Integration","authors":"Mohammed Naif Alatawi","doi":"10.1155/2024/2194986","DOIUrl":"https://doi.org/10.1155/2024/2194986","url":null,"abstract":"<div>\u0000 <p>This paper presents a pioneering exploration into the optimization of Home Energy Management Systems (HEMS) through the novel application of the Bacterial Foraging Metaheuristic Optimization (BFMO) algorithm and Deep Reinforcement Learning (DRL). The study systematically addresses the pressing challenge of enhancing residential energy efficiency, focusing on dynamic appliance scheduling within HEMS. A robust methodology is established, encompassing data collection from smart homes, implementation details of the BFMO algorithm, DRL techniques, and a comprehensive evaluation framework. The unique contribution of this research lies in the effective integration of the BFMO algorithm and DRL to orchestrate energy-conscious scheduling of home appliances within HEMS. The BFMO algorithm demonstrates its adaptability to fluctuating energy costs and consumption patterns by simulating the foraging behaviour of bacteria. At the same time, DRL enhances the system’s ability to learn and optimize scheduling decisions over time, showcasing their combined efficacy in real-world scenarios. The algorithms’ iterative application of chemotaxis, reproduction, elimination-dispersal, swarming, and learning consistently yields optimized appliance schedules. The main focus of this study resides in the evaluation metrics illustrating the tangible benefits of BFMO and DRL compared to traditional HEMS. Significant reductions in total energy consumption and cost, accompanied by improved peak demand management, exemplify the algorithms’ impact. Furthermore, the study delves into enhancing user comfort, integrating renewable energy sources, and the overall robustness of HEMS, all demonstrating the multifaceted advantages of the BFMO and DRL approaches. This research contributes methodologically by introducing and detailing these algorithms and provides a valuable dataset and evaluation metrics for future research in the domain. The findings underscore the immediate and long-term relevance of optimizing HEMS with BFMO and DRL, catering to researchers, practitioners, and policymakers involved in advancing smart grid technologies and sustainable residential energy management. In summary, this work establishes the BFMO algorithm and DRL as pioneering and versatile tools for energy-conscious appliance scheduling in HEMS, offering a substantial leap forward in the quest for efficient and sustainable residential energy management.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2194986","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}