International Transactions on Electrical Energy Systems最新文献

筛选
英文 中文
Implementation of the Fuzzy Logic Controlled 31-Level Diode Switched Multilevel Inverter with Optimal Components for Solar PV-Fed System 为太阳能光伏发电系统实现具有最佳组件的模糊逻辑控制 31 级二极管开关多电平逆变器
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-06-10 DOI: 10.1155/2024/7352401
Paneti Anjaneya Vara Prasad, C. Dhanamjayulu
{"title":"Implementation of the Fuzzy Logic Controlled 31-Level Diode Switched Multilevel Inverter with Optimal Components for Solar PV-Fed System","authors":"Paneti Anjaneya Vara Prasad,&nbsp;C. Dhanamjayulu","doi":"10.1155/2024/7352401","DOIUrl":"https://doi.org/10.1155/2024/7352401","url":null,"abstract":"<div>\u0000 <p>This work presents a novel architecture for the 31-level asymmetrical DC voltage source configured diode switched multilevel inverter, which has a single phase and fewer components. Using asymmetric DC sources and an H-bridge, the proposed topology generates a maximum output voltage of 31 levels. This 31-level topology is suitable for both renewable energy source conversion (RES) and electric vehicle (EV) applications. This topology requires fewer total components, lower cost, and smaller size. Along with the numerous benefits of MLIs, reliability issues are critical due to the larger number of devices required to minimize THD. Several characteristics, such as total standing voltage (TSV), reliability, cost function (CF), efficiency, and overall power losses, are investigated for the developed 31-level MLIs. The TSV and CF of the proposed MLI are critical factors in demonstrating that the proposed topology is cost-effective when compared to other recent topologies. Many parameters are thoroughly compared and tabulated, as well as represented graphically. The suggested MLI has lower TSV and component demand. Total harmonic distortion complies with IEEE specifications. The reliability aspects were also calculated and validated. The proposed MLI is controlled by a fuzzy logis controller (FLC) to achieve efficient results. The topology is simulated in MATLAB/Simulink software under a variety of conditions and dynamic load changes, and a prototype with a dSPACE controller is also implemented.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7352401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Deep Learning Techniques for Load Forecasting in Power Systems Using Single-Layer and Hybrid Models 使用单层模型和混合模型进行电力系统负荷预测的深度学习技术比较分析
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-06-10 DOI: 10.1155/2024/5587728
Jiyeon Jang, Beopsoo Kim, Insu Kim
{"title":"Comparative Analysis of Deep Learning Techniques for Load Forecasting in Power Systems Using Single-Layer and Hybrid Models","authors":"Jiyeon Jang,&nbsp;Beopsoo Kim,&nbsp;Insu Kim","doi":"10.1155/2024/5587728","DOIUrl":"https://doi.org/10.1155/2024/5587728","url":null,"abstract":"<div>\u0000 <p>Accurate power load forecasting is critical to maintaining the stability and efficiency of power systems. However, due to the complex and fluctuating nature of power load patterns, physical calculations are often inefficient and time-consuming. In addition, traditional methods, known as statistical learning methods, require not only mathematical background and understanding but also statistical background and understanding. To overcome these difficulties, the authors proposed a simpler way to predict load by using artificial intelligence. This study investigated the performance of forecasting techniques, including three single-layer and seven hybrid multilayer deep learning models that combine them. This study also analyzed the effect of hyperparameters on the learning results by varying the epoch and activation functions. To evaluate and analyze the performance of the deep learning model, this study used load data from the power system in Jeju Island, Korea. In addition, this study included weather factors that may affect the load to improve the prediction performance. The prediction process is performed on the Python platform, and the model that showed the highest accuracy was LSTM-CNN, a hybrid combination of LSTM and CNN models. Considering both the maximum and minimum error, the error value was low at 0.231%. By providing detailed insights into the entire research process, including data collection, preprocessing, scaling, prediction, and analysis, this study provided valuable guidance for future research in this area.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5587728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141298585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of an Interior Permanent Magnet Synchronous Motor for a Traction Drive Using Multiobjective Optimization 利用多目标优化设计和分析用于牵引传动的内部永磁同步电机
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-05-27 DOI: 10.1155/2024/3631384
Yingying Xu, Yiguang Chen, Zhihua Fu, Mingxia Xu, Haiyu Liu, Li Cheng
{"title":"Design and Analysis of an Interior Permanent Magnet Synchronous Motor for a Traction Drive Using Multiobjective Optimization","authors":"Yingying Xu,&nbsp;Yiguang Chen,&nbsp;Zhihua Fu,&nbsp;Mingxia Xu,&nbsp;Haiyu Liu,&nbsp;Li Cheng","doi":"10.1155/2024/3631384","DOIUrl":"10.1155/2024/3631384","url":null,"abstract":"<div>\u0000 <p>With the development of new energy industries, the demand for the driving range and power quality of electric vehicle (EV) drive systems is growing rapidly. The drive motor is faced with the challenge of continuously improving power density and performance. This paper proposes a multiobjective optimization method for an interior permanent magnet synchronous motor for a traction drive (IPMSMTD). Based on the flat wire winding technology, the multiobjective optimization design of the IPMSMTD is carried out to improve the motor power density and high-efficiency range, reduce the torque ripple, and suppress the electromagnetic vibration and noise. The structure and size equation of the IPMSMTD are described. The mathematical model considering iron losses is established, and the optimization objectives are determined. Based on the genetic algorithm, a multiobjective optimization mechanism of the magnetic pole structure is established. The operation performance of the motor is analyzed by the finite element simulation and efficiency map. In order to ensure the comprehensive operation index of the IPMSMTD, the vibration noise and modal analysis are carried out, which verifies the rationality of the designed motor and the optimization method.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3631384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Term Multiyear Transmission Expansion Planning in Turkish Power System 土耳其电力系统的长期多年输电扩建规划
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-05-25 DOI: 10.1155/2024/9028785
Ahmet Ova, Erdi Dogan, Sevki Demirbas
{"title":"Long-Term Multiyear Transmission Expansion Planning in Turkish Power System","authors":"Ahmet Ova,&nbsp;Erdi Dogan,&nbsp;Sevki Demirbas","doi":"10.1155/2024/9028785","DOIUrl":"10.1155/2024/9028785","url":null,"abstract":"<div>\u0000 <p>To sustain the clean energy transition without interruption and to ensure the reliable operation of the transmission system, it is required to have enough additional transmission capacity in the future horizons. The transmission expansion planning (TEP) problem is a core issue in deciding additional transmission capacity in the planning activities. TEP aims to find the best expansion plan while satisfying technical and economic constraints. In this study, a new binary version of the original FBI algorithm called the BFBI (binary forensic-based investigation) algorithm is developed to solve the binary TEP problem. The effectiveness and performance of the developed BFBI are assessed by implementing it in two different test systems: the standard Garver 6-bus test system and the modified 400 kV Turkish grid. Seasonal scenarios are created for 5- and 10-year planning periods to cover all possible generation and load conditions and to assess the impact of the increased share of RES on the grid in the TEP studies conducted for the modified 400 kV Turkish grid created as a bulk realistic grid. The TEP problem is solved by including investment, reliability, and operational costs in two different objective functions for cases while considering the N-1 contingency criterion. The efficacy and robustness of the BFBI algorithm are justified by comparing it with well-known algorithms such as GA and PSO.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9028785","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Sensor Faults on the Stresses Caused by Wind Turbine Blades 传感器故障对风力涡轮机叶片应力的影响
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-05-23 DOI: 10.1155/2024/7392391
Dariush Biazar
{"title":"Effect of Sensor Faults on the Stresses Caused by Wind Turbine Blades","authors":"Dariush Biazar","doi":"10.1155/2024/7392391","DOIUrl":"10.1155/2024/7392391","url":null,"abstract":"<div>\u0000 <p>Rotor blades are the main part for generating electrical energy and the primary source of stresses in a wind turbine (WT). The stresses caused by the blades increase the load on the hub, tower, and foundation of the WTs. In this research, the asymmetry of the blade angle with each other has been investigated as one of the factors affecting the stress distribution using Monte Carlo (MC) simulation. The focus of this study is on the stresses caused by the asymmetry of the blades angle when there is the fault in the sensors. A deep understanding of the blade stress distribution due to sensor faults can improve control designs, increase WT operating time, and reduce energy generation costs when these faults occur.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7392391","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141104248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Impact of SSSC-Based FLC on the Stability of Power Systems Connected to Wind Farms 基于 SSSC 的 FLC 对连接风电场的电力系统稳定性影响的研究
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-05-22 DOI: 10.1155/2024/1074029
Ahmadreza Abdollahi Chirani, A. Karami
{"title":"Investigation of the Impact of SSSC-Based FLC on the Stability of Power Systems Connected to Wind Farms","authors":"Ahmadreza Abdollahi Chirani,&nbsp;A. Karami","doi":"10.1155/2024/1074029","DOIUrl":"10.1155/2024/1074029","url":null,"abstract":"<div>\u0000 <p>The integration of renewable energy sources into power systems has increased significantly in recent years. Among various types of renewable energy, the use of wind energy is growing rapidly due to its low operating cost, wide distribution worldwide, and no greenhouse gas emissions. However, power systems integrated with wind energy may face stability and reliability issues due to the intermittent nature of wind power. Therefore, in power systems connected to wind farms, it is usually required to use some compensators such as static synchronous series compensator (SSSC) to increase the system performance under abnormal conditions. On the other hand, for an SSSC to be effective in improving the system performance, it must be equipped with a suitable controller. In this paper, a fuzzy logic controller (FLC) is used for the SSSC because of its advantages over conventional controllers. Extensive research has been conducted in power systems with wind turbines in which SSSC or FLC has been used; however, their simultaneous application in such systems has received less attention. Therefore, this article aims to fill this gap. The proposed method is implemented on two power systems and the simulation results are analyzed. In both systems, the dynamic behavior of three different wind farms is examined. In the first and second wind farms, either a squirrel cage induction generator (SCIG) or doubly-fed induction generator (DFIG) are used, whereas in the third one which is a combined wind farm (CWF), an equal number of SCIG and DFIG are employed. In wind farms with SCIG or DFIG, an SSSC is also utilized. Furthermore, an FLC is employed for the SSSC to improve its efficacy. A proportional integral (PI) controller is also considered for the SSSC, and its results are compared with FLC results. The simulation results confirm the superiority of FLC over PI controller.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1074029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and Reactive Power Sharing Enhancement in Islanded Microgrid via Small-Signal Modeling and Optimal Virtual Impedance Control 通过小信号建模和优化虚拟阻抗控制增强孤岛式微电网的稳定性和无功功率共享
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-05-04 DOI: 10.1155/2024/5469868
Ilyas Bennia, Yacine Daili, Abdelghani Harrag, Hasan Alrajhi, Abdelhakim Saim, Josep M. Guerrero
{"title":"Stability and Reactive Power Sharing Enhancement in Islanded Microgrid via Small-Signal Modeling and Optimal Virtual Impedance Control","authors":"Ilyas Bennia,&nbsp;Yacine Daili,&nbsp;Abdelghani Harrag,&nbsp;Hasan Alrajhi,&nbsp;Abdelhakim Saim,&nbsp;Josep M. Guerrero","doi":"10.1155/2024/5469868","DOIUrl":"10.1155/2024/5469868","url":null,"abstract":"<p>In the context of integrating Renewable Energy Sources, Microgrid (MG) development is pivotal, particularly as a foundational technology for Smart-Grid evolution. Despite advancements in control techniques, challenges persist in ensuring system stability and accurate power sharing across diverse operational conditions and load types. The objective of this research is to control numerous paralleled inverters-based distributed generators (DGs) that contribute to power sharing in an island MG. The proposed methodology involves developing an innovative small-signal model for islanding MGs that incorporate virtual impedances. Subsequently, optimization algorithms based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are proposed and compared for designing the virtual impedances. These algorithms analyze all potential operating points, aiming to minimize reactive power mismatches while maximizing MG stability. The suggested objective function facilitates the simultaneous achievement of these objectives. The proposed approaches were tested using MATLAB-Simulink software, and the comparison of the results between conventional approach and the proposed optimal approaches shows significant improvement in terms of the dynamic response during load changes, such as a decrease in response time by up to 20%, a reduction in overshoot percentage by approximately 15%, and a settling time improvement of nearly 25%. These quantified improvements highlight the effectiveness of the GA and PSO methods in minimizing the reactive power-sharing error while optimizing MG performance and stability.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Extraction and Classification of Power Quality Disturbances Using Optimized Tunable-Q Wavelet Transform and Incremental Support Vector Machine 利用优化的可调 Q 小波变换和增量支持向量机提取电能质量扰动的特征并对其进行分类
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-04-29 DOI: 10.1155/2024/1335666
Indu Sekhar Samanta, Pravat Kumar Rout, Kunjabihari Swain, Satyasis Mishra, Murthy Cherukuri
{"title":"Feature Extraction and Classification of Power Quality Disturbances Using Optimized Tunable-Q Wavelet Transform and Incremental Support Vector Machine","authors":"Indu Sekhar Samanta,&nbsp;Pravat Kumar Rout,&nbsp;Kunjabihari Swain,&nbsp;Satyasis Mishra,&nbsp;Murthy Cherukuri","doi":"10.1155/2024/1335666","DOIUrl":"10.1155/2024/1335666","url":null,"abstract":"<p>The widespread integration of renewable energy sources (RESs) into power systems using power electronics-based interface devices has led to a substantial rise in power quality (PQ) issues. There is an immediate requirement for effective monitoring, detection, and classification of power quality disturbances (PQDs) that is needed to take remedial measures and design planning of the system architecture. This study presents a hybrid approach with an objective for the feature extraction and classification of PQDs. The proposed hybrid approach is comprised of an optimized tunable-<i>Q</i> wavelet transform (OTQWT) for the feature extraction and incremental support vector machine (ISVM). A four-stage approach is suggested for the PQ detection and classification in this study. In the first stage, the various data are retrieved both in the form of synthetic data by mathematical formulations and real-time data with prototype design setup. In the second stage, regardless of the specified wavelet function, the PQD signals are decomposed into low-pass and high-pass sub-bands using the tunable-<i>Q</i> wavelet transform (TQWT). However, the utilization of default decomposition parameters to address nonstationary PQ signals may lead to information loss and reduced performance of the system. To avoid this limitation, an OTQWT as an enhanced technique to TQWT based on an Adaptive Particle Swarm Optimization (APSO) is suggested. A modified objective function based on the mean square error (MSE) is used to improve the decomposition process. In the third stage, an efficient classifier is suggested based on the ISVM. Lastly, to test and evaluate the performance of the proposed approach, twelve types of PQDs including noise and multiple occurrences are considered. The comparative analysis with other popular methods reflects the better performance of the proposed approach and justifies its use for PQ detection and classification purposes in real-time​ conditions.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet 基于 AP 聚类和 LSTNet 的甘肃省河西地区光伏功率预测
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-04-26 DOI: 10.1155/2024/6667756
Xujiong Li, Guoming Yang, Jun Gou
{"title":"PV Power Forecasting in the Hexi Region of Gansu Province Based on AP Clustering and LSTNet","authors":"Xujiong Li,&nbsp;Guoming Yang,&nbsp;Jun Gou","doi":"10.1155/2024/6667756","DOIUrl":"10.1155/2024/6667756","url":null,"abstract":"<p>Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It consists of a combination of affinity propagation clustering and long-term and short-term time series network models. First, the affinity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into different seasons. The Pearson correlation coefficient is used to determine the strong correlation between meteorological factors of photovoltaic power, and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster. Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of multiple photovoltaic stations in the group. Finally, PV power plants in five cities, Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. The experimental comparison shows that the prediction model achieves high prediction accuracy and robustness.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torque System Modeling and Electromagnetic Coupling Characteristics Analysis of a Midpoint Injection Type Bearingless Permanent Synchronous Magnet Motor 中点喷射式无轴承永磁同步电机的扭矩系统建模和电磁耦合特性分析
IF 2.3 4区 工程技术
International Transactions on Electrical Energy Systems Pub Date : 2024-04-22 DOI: 10.1155/2024/3078894
Wenshao Bu, Hang Li
{"title":"Torque System Modeling and Electromagnetic Coupling Characteristics Analysis of a Midpoint Injection Type Bearingless Permanent Synchronous Magnet Motor","authors":"Wenshao Bu,&nbsp;Hang Li","doi":"10.1155/2024/3078894","DOIUrl":"10.1155/2024/3078894","url":null,"abstract":"<p>Taking the Midpoint Injection type Bearingless Permanent Magnet Synchronous Motor (MPI-BL-PMSM) as an object, to solve its problems of large torque pulsation and insufficient suspension force when adopting Midpoint Suspension Current Unilateral Injection (MPSC-UI), a Midpoint Suspension Current Bilateral Injection (MPSC-BI) solution is proposed. Based on the half-winding structure of MPI-BL-PMSM, and from the electromechanical energy conversion principle, the torque model for MPSC-BI solution is established. On this basis, the torque model for MPSC-UI method was derived. The correctness of the established torque mathematical models based on half-winding structure was verified through the finite element method (FEM), and the “dual-frequency” electromagnetic coupling characteristics of suspension current on electromagnetic torque were compared and analyzed from the perspectives of theoretical model and FEM simulation. The results indicate that the MPSC-BI method can effectively suppress or avoid the torque pulsation coupled by suspension current and can obtain about 1-time increase of controllable suspension force; the advantages of MPSC-BI solution in dynamic torque decoupling characteristics are demonstrated, while the only downside is that the coupling effect of torque current on radial suspension force is slightly greater than that of the MPSC-UI method.</p>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信