{"title":"Current-Limiting Strategy for Unbalanced Low-Voltage Ride Through of the SMSI-MG Based on Coordinated Control of the Generator Subunits","authors":"Jinjing Zhang, Xinggui Wang, Sheng Xue","doi":"10.1155/2024/4613473","DOIUrl":"https://doi.org/10.1155/2024/4613473","url":null,"abstract":"<div>\u0000 <p>Unlike the inverters in the traditional alternating-current (AC) microgrid, those in a microgrid with series microsource inverters (SMSI-MG) are connected to the power grid after being cascaded. The authors of this study first divide the control sections according to the degree of grid voltage dips and formulate a coordinated scheme to suppress fluctuations in the output powers of the SMSI-MG. For the section in which the degree of unbalanced grid voltage dips is relatively low, a current-limiting strategy that reduces the output power of the SMSI-MG through the coordinated control of the generator subunits (CCGU) is proposed. More active power can be provided by the SMSI-MG when the proposed strategy is used, than in the strategy that is based on changing the reference power, and the output reactive power of the SMSI-MG can be automatically changed with the degrees of dip and unbalance of the grid voltage. The Light Gradient-Boosting Machine (LightGBM) is used to establish a mapping relationship between the parameters characterizing overcurrent and the reduction quantity in output active power of the SMSI-MG to implement the CCGU-based current-limiting strategy. The complex collaborative control is simplified to improve the low-voltage ride through (LVRT) capability of the SMSI-MG.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4613473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruien Bian, Xiuchen Jiang, Guoying Zhao, Yadong Liu, Zhou Dai
{"title":"A Scalable and Coordinated Energy Management for Electric Vehicles Based on Multiagent Reinforcement Learning Method","authors":"Ruien Bian, Xiuchen Jiang, Guoying Zhao, Yadong Liu, Zhou Dai","doi":"10.1155/2024/7765710","DOIUrl":"https://doi.org/10.1155/2024/7765710","url":null,"abstract":"<div>\u0000 <p>The electric vehicle (EV) has been popular in recent years, which also brings huge challenges to the distribution network due to its energy instability. In order to consider the economic factors of dispatching these distributed renewable resources, the voltage variation is also important. A novel model-free method is put forward for collaborative management of EV resources of aggregators in the distribution network. The economic costs and physical network constraints for this energy management issue are considered at the same time. A Multiagent Deep Deterministic Policy Gradient (MADDPG) algorithm is applied to learn the cooperative energy control strategies. A transfer learning technique is used to fine-tune the trained policy when more aggregators join in the network. The proposed method can achieve close results to the traditional optimization methods, while it takes less than one second to take control actions, making it is more suitable for real-time online energy management. Compared to other advanced reinforcement learning (RL) models, numerical simulations conducted on IEEE test cases greatly illustrate the effectiveness and superiority of the proposed method.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7765710","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Technoeconomic Conservation Voltage Reduction–Based Demand Response Approach to Control Distributed Power Networks","authors":"Shahram Pourfarzin, Tahere Daemi, Hamidreza Akbari","doi":"10.1155/2024/9752955","DOIUrl":"https://doi.org/10.1155/2024/9752955","url":null,"abstract":"<div>\u0000 <p>This manuscript investigates the transformative shift in electricity generation and distribution towards distributed power networks, particularly microgrids, amid escalating energy demand and environmental concerns. Emphasizing a pioneering technoeconomic conservation voltage reduction–based demand response approach, the study integrates conservation voltage reduction as a controllable demand response method within distributed power networks, highlighting the developed droop control method for effective regulation. Conservation voltage reduction, a no-cost procedure for minimizing loss, is applied to reduce voltage during peak periods to conserve power, decrease active and reactive power losses through precise load modeling, and enhance consumption efficiency. The most significant challenge of this project is the simultaneous use of conservation voltage reduction with the uncertainties of distributed generation sources, resulting to reduce losses and ultimately lower operating costs, a topic not previously studied in existing literature. The contributions include introducing a novel approach based on droop control to manage resources and presenting a detailed control strategy tailored to distributed power networks for improving voltage stability with minimal costs. Importantly, the proposed method demonstrates superior accuracy, achieving up to an 18% improvement over existing methods. This research contributes to comprehensive solutions for optimizing energy consumption, enhancing grid stability, and adapting to the evolving distributed power systems landscape.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9752955","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. H. Hussaian Basha, Shaik Rafikiran, Ezzeddine Touti, Besma Bechir Graba, Mouloud Aoudia
{"title":"A Universal Source DC–DC Boost Converter for PEMFC-Fed EV Systems With Optimization-Based MPPT Controller","authors":"C. H. Hussaian Basha, Shaik Rafikiran, Ezzeddine Touti, Besma Bechir Graba, Mouloud Aoudia","doi":"10.1155/2024/5520331","DOIUrl":"https://doi.org/10.1155/2024/5520331","url":null,"abstract":"<div>\u0000 <p>Conventional energy networks produce energy with less efficiency. Also, these source’s development costs and size are more. So, the world is focusing on renewable energy networks for energy production to the consumer. In this work, a proton exchange membrane fuel stack (PEMFS) technology is selected for energy feeding to the hydrogen vehicle. The merits of this stack are more abundant, faster fuel stack operational response, and more efficient for electrical automotive networks. However, the fuel stack’s energy production is nonlinear and its operational point varies concerning the fuel stack device operating temperature. The particle swarm optimized adaptive network-based fuzzy inference system (PSO-ANFIS) is proposed in this work to find the operational point of the fuel cell network. The features of this hybrid methodology are the low number of iteration values required, low convergence time, low-level dependence on the fuel stack, and high compliance for the quick deviations of the fuel system temperature. The operating efficiency and tracking time of the proposed maximum power point tracking (MPPT) controller are 95.60% and 0.1089 s. Another issue of the fuel cell is high output current generation and less voltage production. This condition is happening in the fuel cell because of its chemical reaction dynamics, internal resistance of the cell, and electrochemical potential. Due to this excess current flow in the fuel cell, the direct fuel stack-fed electrical networks face the issue of high power conduction losses. To reduce the power conduction losses of the system, a single-switch power circuit is used to reduce fuel source current, thereby optimizing the excessive power losses of the system. The whole fuel stack energy production network is analyzed by selecting the MATLAB Window.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5520331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sile Hu, Yuan Gao, Wenbin Cai, Jianan Nan, Ye Li, Muhammad Farhan Khan, Yucan Zhao, Jiaqiang Yang
{"title":"Optimal Scheduling Strategy of Wind–Solar–Thermal-Storage Power Energy Based on CGAN and Dynamic Line–Rated Power","authors":"Sile Hu, Yuan Gao, Wenbin Cai, Jianan Nan, Ye Li, Muhammad Farhan Khan, Yucan Zhao, Jiaqiang Yang","doi":"10.1155/2024/2803268","DOIUrl":"https://doi.org/10.1155/2024/2803268","url":null,"abstract":"<div>\u0000 <p>This paper introduces a new way to plan and manage the use of wind and solar power, along with traditional thermal power (TP) and batteries, to get the most environmental and economic benefits. It uses a special kind of artificial intelligence, called conditional generative adversarial networks (CGAN), to predict how much power wind and solar sources will produce. Subsequently, it takes into account the dynamic line–rated power (DLRP) in order to determine the dynamic transmission capacity of lines associated with wind and solar power generation. The primary objectives are to reduce the operating costs of TP plants, maximize the utilization of wind and solar energy, minimize power deviations in electricity transmission, and enhance revenue from electricity transmission. To solve this complex problem, the paper uses a smart method to simplify the model, making it possible to find solutions with CPLEX. Tests on a small network with six nodes show that this approach not only saves money but also makes better use of clean energy sources.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2803268","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Parthasaradi, A. Karunamurthy, C. H. Hussaian Basha, S. Senthilkumar
{"title":"Efficient Task Scheduling in Cloud Computing: A Multiobjective Strategy Using Horse Herd–Squirrel Search Algorithm","authors":"V. Parthasaradi, A. Karunamurthy, C. H. Hussaian Basha, S. Senthilkumar","doi":"10.1155/2024/1444493","DOIUrl":"https://doi.org/10.1155/2024/1444493","url":null,"abstract":"<div>\u0000 <p>Cloud computing (CC) is a technology that enables the delivery of IT services outside of the workplace. CC, on the other hand, has had several drawbacks. The task scheduling issue is taken as one of the important difficulties because a solid mapping between available resources and users’ activities is essential to reduce the execution time of users’ jobs (i.e., minimize makespan) and maximize resource utilization. Because the service provider must offer several customers’ benefits at distinct times and from distinct locations, task scheduling is indeed a serious challenge in CC. As a result, in the CC environment, these operations must be scheduled in a more dynamic and timely manner. The objective is to provide an enhanced task scheduling algorithm for allocating the task of the user to different computing resources. The major aim of the research work is to reduce the cost and the execution time as well as to improve the resource utilization of the task scheduling problem using the improved support vector machine (ISVM) and the optimization concept. The novel algorithm used here merges two familiar algorithms as squirrel search algorithm (SSA) and the horse herd optimization algorithm (HOA) leading to a new hybrid metaheuristic algorithm called the horse herd–squirrel search algorithm (HO–SSA). The developed HO–SSA assists in introducing a multiobjective optimization for efficiently handling task scheduling issues in the cloud sector. The proposed HO–SSA method for the task scheduling in CC model in terms of cost is 22.22%, 15.73%, and 38.74% better than SSA, HOA, and TSA, respectively. Similarly, the proposed HO–SSA method for the task scheduling in CC model with respect to energy is 9.68%, 5.35%, and 22.50% superior to SSA, HOA, and TSA, respectively. The proposed method outperformed the existing methods like SSA, HOA, and TSA in terms of cost, energy, degree of imbalance, makespan, speedup, and efficiency.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1444493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Bai, Lei Zhang, Xiang-Min Meng, Jing Bai, Guang Han
{"title":"A Novel Terminal Sliding Mode Variable Structure Model Reference Adaptive System Observer for Permanent Magnet Synchronous Motors","authors":"Yan Bai, Lei Zhang, Xiang-Min Meng, Jing Bai, Guang Han","doi":"10.1155/2024/4528374","DOIUrl":"https://doi.org/10.1155/2024/4528374","url":null,"abstract":"<div>\u0000 <p>This paper introduces a model reference adaptive system observer based on the non-singular fast terminal sliding mode (NFSM-MRASO) for the purpose of sensorless control of permanent magnet synchronous motors (PMSMs) in electric vehicle applications. Firstly, a non-singular fast terminal sliding surface is constructed based on the output errors of the reference model and the adjustable model. This ensures that the output errors between the two models converge to zero in a finite time and effectively avoids the singularity problem in the terminal sliding mode control. In addition, a novel reaching law (NRL) is designed to replace the traditional exponential reaching law (TRL) to suppress the chattering phenomenon in the sliding mode control. Finally, the feasibility and effectiveness of the NFSM-MRASO strategy are demonstrated through simulation results.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4528374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nailong Zhang, Jie Chen, Chao Gao, Xiao Tan, Hongze Li
{"title":"Nonlinear Failure Analysis of Critical Area of Transmission Towers Based on the Continuum Damage Theory","authors":"Nailong Zhang, Jie Chen, Chao Gao, Xiao Tan, Hongze Li","doi":"10.1155/2024/3543891","DOIUrl":"https://doi.org/10.1155/2024/3543891","url":null,"abstract":"<div>\u0000 <p>Transmission towers serve as crucial safety pillars within the power transmission system, and their damage can lead to severe consequences. The structural failure of a tower undergoes a process from the initiation of local damage to overall failure, emphasizing the importance of conducting detailed local safety research. This paper introduces a nonlinear damage analysis method rooted in the continuous damage theory, specifically designed for critical areas of transmission towers. A material subroutine for elastic-plastic-damage constitutive equations is developed using commercial software, and thorough verification ensures the accuracy of both the subroutine and the algorithm. The proposed algorithm is then applied to analyze the damage in critical areas of a tower, simulating the plasticity-damage coupling evolution of the main leg during the collapse of the transmission tower. Regarding the treatment of bolt connections in the local model, it indicates that there is a small difference between the contact model and the rigid-joint model results. Taking computational efficiency into consideration, it is recommended to employ rigid-joint model to simulate the evolution of damage. The presented example illustrates damage occurring on the outer side of the main leg, ultimately leading to lateral damage under the combined influence of bending and torsion. This research offers a novel method for investigating the failure mechanisms of transmission towers under extreme weather conditions and proposes precise reinforcement strategies.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3543891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Unal, O. I. Hatipoglu, A. Turker, A. F. Unal, B. U. Deveci, P. Kirci, M. Ozbayoglu
{"title":"Comparative Analysis and Performance Evaluation of Underwater Cable Detection and Tracking Techniques: A Comprehensive Survey","authors":"P. Unal, O. I. Hatipoglu, A. Turker, A. F. Unal, B. U. Deveci, P. Kirci, M. Ozbayoglu","doi":"10.1155/2024/5548146","DOIUrl":"https://doi.org/10.1155/2024/5548146","url":null,"abstract":"<div>\u0000 <p>This survey provides a comprehensive review of underwater cable detection and tracking literature, identifying key problem types and highlighting unique underwater challenges. It emphasizes the critical role of underwater cable detection in global communications and energy infrastructures, addressing complexities like low visibility and variable sea conditions. The analysis compares the efficacy of various models, particularly deep learning approaches like CNNs and Transformers, in adapting to underwater imagery challenges. A new roadmap for efficient cable detection and tracking systems is proposed, focusing on multimodal data integration and nonoptical detection methods. Importantly, the study includes performance evaluations of state-of-the-art models on custom underwater datasets, offering practical insights. The survey’s findings are validated through an implementation of an underwater object-tracking model incorporating effective algorithms from the literature.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5548146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Ishaque, Javed Ahmed Laghari, Muhammad Akram Bhayo, Sadullah Chandio, Ibrahim Mahariq
{"title":"Hybrid ANFIS-PI-Based Robust Control of Wind Turbine Power Generation System","authors":"Muhammad Ishaque, Javed Ahmed Laghari, Muhammad Akram Bhayo, Sadullah Chandio, Ibrahim Mahariq","doi":"10.1155/2024/2389751","DOIUrl":"https://doi.org/10.1155/2024/2389751","url":null,"abstract":"<div>\u0000 <p>This paper introduces a novel hybrid controller designed for a wind turbine power generation system (WTPGS) that utilizes a permanent magnet synchronous generator (PMSG). This hybrid controller combines the adaptability of an adaptive neuro-fuzzy inference system (ANFIS) with the simplicity of a proportional-integral (PI) controller. The PI controllers are traditionally used for stability and noise handling. ANFIS adds adaptability, making it more suitable to cope with the variable nature of wind energy. The primary objective of this hybrid strategy is to augment the overall control performance and reliability of PMSG-based WTPGS when encountered with continuous variable wind conditions. However, implementing the PI controller alone with the WTPGS often suffers from high overshoot and sluggish response in nonlinear systems like WTPGS. In contrast, ANFIS controllers offer superior performance to PI and other artificial intelligence controllers but are still susceptible to noise issues. In this paper, the proposed WTPGS system is designed in MATLAB/Simulink software where a hybrid controller (ANFIS-PI) is implemented in the machine-side converter (MSC) and grid-side converter (GSC) of a variable speed PMSG-based wind turbine to enhance its performance subjected to wind variations. The hybrid controller is implemented in such a way that the ANFIS controller is implemented in the outer layers while the PI controller is applied in the inner layers of both MSC and GSC. The simulation results for this hybrid controller in the MSC outperform those of the conventional PI controller. They demonstrate minimal overshooting and settling time, maintaining consistent stability even when subjected to various test signals at different intervals. Similarly, the GSC also surpasses conventional PI controllers, achieving a significant 6.4% reduction in maximum overshoot and a decrease of 4.36 seconds in settling time. This highlights its strong suitability for wind turbine applications.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2389751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}