Muhammad Hashim, Laiq Khan, Nadeem Javaid, Zahid Ullah, Ifra Shaheen
{"title":"Enhancing Smart City Functions through the Mitigation of Electricity Theft in Smart Grids: A Stacked Ensemble Method","authors":"Muhammad Hashim, Laiq Khan, Nadeem Javaid, Zahid Ullah, Ifra Shaheen","doi":"10.1155/2024/5566402","DOIUrl":"https://doi.org/10.1155/2024/5566402","url":null,"abstract":"<div>\u0000 <p>Smart grid is the primary stakeholder in smart cities integrated with modern technologies as the Internet of Things (IoT), smart healthcare systems, industrial IoT, renewable energy, energy communities, and the 6G network. Smart grids provide bidirectional power and information flow by integrating many IoT devices and software. These advanced IOTs and cyber layers introduced new types of vulnerabilities and could compromise the stability of smart grids. Some anomalous consumers leverage these vulnerabilities, launch theft attacks on the power system, and steal electricity to lower their electricity bills. The recent developments in numerous detection methods have been supported by cutting-edge machine learning (ML) approaches. Even so, these recent developments are practically not robust enough because of the limitations of single ML approaches employed. This research introduced a stacked ensemble method for electricity theft detection (ETD) in a smart grid. The framework detects anomalous consumers in two stages; in the first stage, four powerful classifiers are stacked and detect suspicious activity, and the output of these consumers is fed to a single classifier for the second-stage classification to get better results. Furthermore, we incorporate kernel principal component analysis (KPCA) and localized random affine shadow sampling (LoRAS) for feature engineering and data augmentation. We also perform comparative analysis using adaptive synthesis (ADASYN) and independent component analysis (ICA). The simulation findings reveal that the proposed model outperforms with 97% accuracy, 97% AUC score, and 98% precision.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5566402","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabah Daniar, Mojtaba Shiroei, Amirhossein Khosravi Sarvenoee
{"title":"Enhancing Speed of Distance Protection for Internal Faults in the Second Zone through an Innovative Protection Algorithm","authors":"Sabah Daniar, Mojtaba Shiroei, Amirhossein Khosravi Sarvenoee","doi":"10.1155/2024/9100505","DOIUrl":"https://doi.org/10.1155/2024/9100505","url":null,"abstract":"<div>\u0000 <p>Electric power systems constantly encounter disturbances and faults, necessitating fast and precise identification and rectification of these issues. This is crucial for ensuring the stability and reliability of the system. This paper introduces a protection scheme for accelerating the second zone operation of the distance relay during internal faults. The proposed scheme exploits the locus of power with positive power characteristics to effectively distinguish between internal and external faults. This is achieved by detecting the remote circuit breaker operation (RCBO). The locus of power remains predominantly within regions 1 or 2, with occasional transfers between these regions due to internal faults prior to and following the RCBO. Conversely, in the case of external faults, regions 3 or 4 are implicated. This distinct variation in the locus of power is applied to derive the protection algorithm. This is affirmed through sequence network analysis of various faults in the transmission line. The cumulative rate of change in relative reactive power has been employed for single-phase RCBO detection. The proposed protection logic employs supplementary undervoltage logic to avoid single-phase operation during two-phase and three-phase faults. The simulations are conducted with meticulous consideration of key factors, such as fault type, fault resistance, fault location, fault inception angle, and power source angle. Simulation results demonstrate the effectiveness of the proposed protection scheme.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9100505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dessalegn Bitew Aeggegn, George Nyauma Nyakoe, Cyrus Wekesa
{"title":"ANFIS-Controlled Boost and Bidirectional Buck-Boost DC-DC Converters for Solar PV, Fuel Cell, and BESS-Based Microgrid Application","authors":"Dessalegn Bitew Aeggegn, George Nyauma Nyakoe, Cyrus Wekesa","doi":"10.1155/2024/6484369","DOIUrl":"https://doi.org/10.1155/2024/6484369","url":null,"abstract":"<div>\u0000 <p>DC-DC converters are essential for integrating distributed energy resources into microgrid (MG) systems. These converters are designed to incorporate intermittent renewable energy sources such as solar photovoltaic (PV) panels, fuel cells (FCs), and battery energy storage systems (BESSs) into the grid. However, conventional DC-DC converters have limitations including lower efficiency, voltage ripple, insufficient voltage regulation, and compatibility issues. This article presents boost and bidirectional buck-boost converters for direct current microgrid (DCMG) applications, employing an adaptive neuro-fuzzy inference system (ANFIS) for control. These proposed converter configurations adeptly manage wide input voltage fluctuations from intermittent sources, consistently supplying power to the DC bus at 500 V and 120 V for boost and buck operations, respectively, with an efficiency of 98.8%. The output voltage result shows that the ANFIS-based boost converter has 10% overshoot as compared to 41% and 50% overshoot in proportional integral (PI) and fuzzy logic controller (FLC), respectively. In both buck and boost modes, the converters’ voltage gain is influenced by duty ratio adjustments only, not sensitive to dynamic input voltage and flexible manipulation of the output voltage for BESS charging. Moreover, the designed converters accommodate load variations within the MG. To assess the converters’ ability to regulate output voltage effectively, PI, FLC, and ANFIS controllers are implemented and compared. And the ANFIS controller demonstrates superior performance, offering faster response times and enhanced stability. Evaluations are conducted through simulations in the MATLAB/Simulink environment.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6484369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency-Constrained Expansion Planning in Competitive Market considering Renewable Failures","authors":"Hamid Gorjipour, Mojtaba Najafi, Naghi Moaddabi Pirkolahchahi","doi":"10.1155/2024/5573592","DOIUrl":"https://doi.org/10.1155/2024/5573592","url":null,"abstract":"<div>\u0000 <p>In modern generation expansion planning of power systems, installing grid-connected renewable energy systems is preferred than thermal units due to their low generation cost and environmental pollution. However, the expanded power system must have ability to resist against any outages influenced on the frequency response of the system. So, several frequency-constrained expansion planning models are extracted to provide a reliable infrastructure to manage the frequency behavior. The main distinction of our model with others is considering the failure of grid-connected renewables in the expansion planning models. Furthermore, due to the lack of information about the uncertainty of malfunctions, a distributionally robust optimization approach is applied to the problem under several ambiguity radiuses. The results of implementing the proposed method on the IEEE RTS96 case show that increasing the penetration of malfunctioned units can lead to more investment on the thermal units to prevent frequency violation under any outage in the system. With increase of the Kullback–Leibler divergence from zero (stochastic) to 3 (robust), the cost of the robust model is increased about 0.02%. The model is designed for the deregulated market to increase the competition of market through maximizing their benefit and line congestion management with local marginal pricing techniques.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5573592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wajid Ahmed, Premila Manohar, C. H. Hussaian Basha
{"title":"A Novel Transient Analysis of Multiterminal VSC-HVDC System Incorporating Superconducting Fault Current Limiter","authors":"Wajid Ahmed, Premila Manohar, C. H. Hussaian Basha","doi":"10.1155/2024/5549066","DOIUrl":"https://doi.org/10.1155/2024/5549066","url":null,"abstract":"<div>\u0000 <p>Power transmission using a voltage source converter- (VSC-) based high-voltage direct current (HVDC) system offers autonomous control of real and reactive power, constant DC voltage polarity, and bidirectional power flow. This helps to realize the multiterminal VSC-HVDC system and its integration into renewable energy sources to meet the growing power demand. However, there is a risk of higher voltages and currents during a DC line fault. The barrier to the advancements of VSC-MTDC systems is the nonavailability of commercial, higher-rated DC circuit breakers. This necessitates research on alternative methods of DC fault-clearing schemes with available technologies. In this direction, a superconducting fault current limiter (SCFCL) is an alternative option to mitigate the problems encountered in VSC-MTDC system operation. Because of this, there are not many VSC-MTDC systems available worldwide. This paper discusses different issues associated with the transient performance of the VSC-MTDC system. A representative case involving resistive SCFCL for DC line protection is presented. The simulations are carried out in the PSCAD/EMTDC platform.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5549066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hari Krishna Achuthan Parthasarathy, Madhusudan Saranathan, Tamilselvi S., Karuppiah N., Praveen Kumar Balachandran, Dhanamjayulu C., Baseem Khan, Thamilmaran A.
{"title":"Application of Covariance Matrix Adaptation-Evolutionary Strategy for Modified Constrained Optimal Power Flow Problem Incorporating Valve Point and Emission Effect","authors":"Hari Krishna Achuthan Parthasarathy, Madhusudan Saranathan, Tamilselvi S., Karuppiah N., Praveen Kumar Balachandran, Dhanamjayulu C., Baseem Khan, Thamilmaran A.","doi":"10.1155/2024/8933933","DOIUrl":"https://doi.org/10.1155/2024/8933933","url":null,"abstract":"<div>\u0000 <p>A prevailing problem in power and energy subsystems is the smooth operation of electric energy systems. This work presents recent, efficient, and reliable evolutionary algorithm for solving the optimal power flow (OPF) analysis. All various practical complex equality and inequality constraints, namely, bus voltages, real powers of the generator buses, tap settings of the transformers and the reactive power generations, shunt compensation, and emission, are considered for the real-world scenario. Primary feature in a gas power plant that raises a lot of computational shortcomings with nonlinear structure in fuel cost is valve point effect. The existing research works have not factored the valve point effect and lack the accuracy in the fuel cost minimization and do not reflect the various practical complexities such as valve point and emission effects in the OPF problem formulation. This paper, for the first time, introduces modified OPF problem formulation incorporating valve point effect and applies covariance matrix adaptation-evolution strategy (CMA-ES) for solving the modified OPF problem. The algorithm is scrutinised and tested on a modified IEEE-30-bus platform for various OPF objectives such as cost minimization, transmission loss, and total voltage deviation, subjected to practical constraints. Load flow analysis has been carried out using the Newton–Raphson method. This work aims to lay the foundation in such a way that it can be applicable in a real-world scenario for any number of buses.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8933933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amjad Khan, Amjad Ullah Khattak, Bilal Khan, Sahibzada Muhammad Ali, Zahid Ullah, Faisal Mehmood
{"title":"Intelligent Renewable Energy Agent-Based Distributed Control Design for Frequency Regulation and Economic Dispatch","authors":"Amjad Khan, Amjad Ullah Khattak, Bilal Khan, Sahibzada Muhammad Ali, Zahid Ullah, Faisal Mehmood","doi":"10.1155/2024/5851912","DOIUrl":"https://doi.org/10.1155/2024/5851912","url":null,"abstract":"<div>\u0000 <p>The Distributed Renewable Energy Sources (DRESs) integrate hybrid microgrid and prosumer activities that constitute a dynamic system characterized by unknown network parameters. The dynamic system faces challenges, such as intermittent power supply due to low inertia, renewable intermittence, plug-and-play prosumer activities, network topology variations, and a lack of constraint handling. These complexities pose significant issues in designing effective control for frequency regulation and consensus-based economic load dispatch (ELD) within DRES to meet varying load demands. To address the above challenges, this research employs a machine learning-based distributed multiagent consensus design that offers a rapid and robust approach, mitigating the limitations associated with the Distributed Average Integral (DAI) control design. The proposed multiagent scheme empowers the successful implementation of ELD and frequency regulation, accommodating the intermittent DRES, diverse network topologies, and the dynamic plug-and-play activities of prosumers. Moreover, an optimization-based DAI tuning model is introduced to overcome tuning limitations. Intelligent renewable energy agents are trained through machine learning-based regression models that use root mean square error metrics for performance evaluations. The intelligent agents employ DAI control to overcome inherent limitations. The effectiveness of the machine learning-based DAI is thoroughly evaluated using the DRES-based IEEE 14-bus hybrid microgrid system. The quantitative results prove its efficacy in addressing the complex challenges of integrated microgrid dynamics.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5851912","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating Demand Response with Unit Commitment in Insular Microgrid considering Forecasting Errors and Battery Storage","authors":"Rekha Swami, Sunil Kumar Gupta, R. C. Bansal","doi":"10.1155/2024/8100507","DOIUrl":"https://doi.org/10.1155/2024/8100507","url":null,"abstract":"<div>\u0000 <p>In this paper, DR programs are integrated with the unit commitment economic dispatch model for a single day to lower total operating costs for an insular microgrid. The proposed model takes into account the forecasting errors associated with wind, solar, and load demands. A new combined DR program is presented to enhance microgrid operation and financial effectiveness, benefiting microgrid consumers. The price elasticity and consumer profit are the foundation for DR modeling. The optimization problem is developed as mixed-integer nonlinear programming (MINLP) and solved using GAMS software. For the case study, an insular microgrid consisting of two microturbines, a wind turbine, solar photovoltaic, and battery storage is considered. Optimization is carried out under both with and without the DR program. The outcomes show that by implementing TOU and DLC DR programs, the operating cost is reduced by 13.55% and 9.68%, respectively. While consumers experience a financial loss in TOU-DR, they earn profit in DLC-DR. Therefore, a combination of the two, i.e., TOU + DLC DR, is proposed, reducing operating costs by 10.73% while increasing profit for users. The suggested approach benefits the microgrid operator as well as its users, encouraging the construction and operation of insular microgrids in rural or isolated areas.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8100507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141583988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adept Domestic Energy Load Profile Development Using Computational Intelligence-Based Modelling","authors":"Olawale Popoola, Agnes Ramokone, Ayokunle Awelewa","doi":"10.1155/2024/6656970","DOIUrl":"https://doi.org/10.1155/2024/6656970","url":null,"abstract":"<div>\u0000 <p>Most studies undertaken on energy usage in buildings have shown that energy utilization is widely influenced by occupancy presence and occupants’ activities relative to the indoor environment, which may be widely dependent on weather conditions and user behaviors. However, the core drawback that has negated the proficient estimation of energy is the modelling of occupant behavior relative to energy use. Occupants’ behavior is a complex phenomenon and has a dynamic nature influenced by numerous internal, individual, and circumstantial factors. This research proposes a computational intelligence-based model for household electricity usage profile development as impacted by core input variables—household activities, household financial status, and occupancy presence. The incorporation of these variables and their adaptiveness is expected to address and resolve unpredictability or nonlinearity concerns, thus allowing for adept energy usage estimation. The model addresses issues unresolved in many other studies, such as occupancy determination (deduction) and the impact on energy consumption. The performance precision of this approach has been demonstrated by trend series analysis, demand analysis, and correlation analysis. Based on the performance indicators including mean absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE), the model has shown proficient predictive output with respect to the metered (actual) energy usage data. The proposed model, compared to actual data, showed that average MAPE values for the respective day standard, morning peak, and night peak demand period (TOUs) are 2.8%, 1.88%, and 0.31% for all income groups, respectively. The aptitude to improve on energy prediction and evaluation accuracy, especially in these periods, makes it a highly suited tool for demand-side management, power generation, and distribution planning activity. This will translate into power system reliability, reduce operation cost (lowest cost), and reduce greenhouse emissions (environmental pollution), thereby cumulating into sustainable cities.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6656970","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jayanthi K., N. Senthil Kumar, Gnanavadivel J., Albert Alexander Stonier, Geno Peter, Vijayakumar Arun, Vivekananda Ganji
{"title":"Analysis of Switched Inductor-Based High Gain SEPIC for Microgrid Systems","authors":"Jayanthi K., N. Senthil Kumar, Gnanavadivel J., Albert Alexander Stonier, Geno Peter, Vijayakumar Arun, Vivekananda Ganji","doi":"10.1155/2024/8591539","DOIUrl":"https://doi.org/10.1155/2024/8591539","url":null,"abstract":"<div>\u0000 <p>DC microgrids are getting more attention because majority of the renewable energy sources generate DC output voltage and also modern gadgets require DC voltage for its operation. In this work, high gain SEPIC (HGSC) topology is derived from switched inductor voltage boosting cell (SIVBC). The HGSC converter provides continuous source current due to SIVBC and high conversion ratio and achieves maximum efficiency of 97.88% when compared with the existing SEPIC topology. The operating modes, conversion ratio expression, power loss distribution, voltage drop, current stress of the semiconductor devices, and efficiency are also analysed. In DC microgrids, the HGSC intends to track the peak power from solar PV array. An incremental conductance algorithm is employed to track the peak power of the solar PV modules. The power flow in the microgrid system is analysed by employing synchronous reference frame theory-based current controller. In order to validate the theoretical concepts of the HGSC converter, the hardware model is developed for the load rating of 1,000 W/380 V output voltage.</p>\u0000 </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8591539","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}