Jieming Zhang, Fan Zhang, Min Song, Shichu Rong, Bin Luo, Pan Wei, Xiaoming Lin
{"title":"Optimal Multienergy Management for Networked Electricity–Hydrogen Hybrid Charging Stations: A Vehicle-Level Auction Approach","authors":"Jieming Zhang, Fan Zhang, Min Song, Shichu Rong, Bin Luo, Pan Wei, Xiaoming Lin","doi":"10.1155/etep/6380682","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Electricity and hydrogen have emerged as viable alternatives to traditional fossil fuels, playing a crucial role in clean and sustainable transportation solutions. The rapid growth of hydrogen vehicles (HVs) and electric vehicles (EVs) has significantly increased the demand for electricity–hydrogen hybrid charging stations (HCSs). Compared to the existing literature that predominantly focuses on optimal energy management from a system-level perspective, this paper explores power management in multiple HCSs and multienergy trading between HCSs and vehicles. In the proposed energy trading mechanism, the EVs and HVs are enabled to strategically submit their offer prices to maximize their utilities. Based on these prices, the aggregator allocates electricity and hydrogen and determines the final payments for the vehicles, aiming to maximize social welfare within the system, subject to the operational constraints of the HCSs. The theory of the Vickrey–Clarke–Groves (VCG) mechanism is employed to design the energy trading mechanism. Furthermore, we introduce the concept of information rents to address potential budget imbalances for the aggregator, enhancing the economic stability of the system. We also provide theoretical proofs for the properties of the proposed mechanism, which include truthfulness, individual rationality, and social welfare maximization. Simulation results demonstrate the effectiveness of the proposed mechanism and verify its three properties.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/6380682","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/6380682","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity and hydrogen have emerged as viable alternatives to traditional fossil fuels, playing a crucial role in clean and sustainable transportation solutions. The rapid growth of hydrogen vehicles (HVs) and electric vehicles (EVs) has significantly increased the demand for electricity–hydrogen hybrid charging stations (HCSs). Compared to the existing literature that predominantly focuses on optimal energy management from a system-level perspective, this paper explores power management in multiple HCSs and multienergy trading between HCSs and vehicles. In the proposed energy trading mechanism, the EVs and HVs are enabled to strategically submit their offer prices to maximize their utilities. Based on these prices, the aggregator allocates electricity and hydrogen and determines the final payments for the vehicles, aiming to maximize social welfare within the system, subject to the operational constraints of the HCSs. The theory of the Vickrey–Clarke–Groves (VCG) mechanism is employed to design the energy trading mechanism. Furthermore, we introduce the concept of information rents to address potential budget imbalances for the aggregator, enhancing the economic stability of the system. We also provide theoretical proofs for the properties of the proposed mechanism, which include truthfulness, individual rationality, and social welfare maximization. Simulation results demonstrate the effectiveness of the proposed mechanism and verify its three properties.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.