Optimizing Virtual Power Plant Operations in Energy and Frequency Regulation Reserve Markets: A Risk-Averse Two-Stage Scenario-Oriented Stochastic Approach

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Asad Mujeeb, Zechun Hu, Jianxiao Wang, Rui Diao, Likai Liu, Zhiyuan Bao
{"title":"Optimizing Virtual Power Plant Operations in Energy and Frequency Regulation Reserve Markets: A Risk-Averse Two-Stage Scenario-Oriented Stochastic Approach","authors":"Asad Mujeeb,&nbsp;Zechun Hu,&nbsp;Jianxiao Wang,&nbsp;Rui Diao,&nbsp;Likai Liu,&nbsp;Zhiyuan Bao","doi":"10.1155/etep/6640754","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The intermittent nature of distributed energy resources (DERs) has introduced significant challenges in power system operations, particularly in terms of flexibility, efficiency, and market participation. Aggregating DERs into a virtual power plant (VPP) offers a promising solution to these challenges, but it requires effective strategies to manage the inherent uncertainties and optimize operations across multiple energy markets. This paper develops an optimal bidding strategy for an aggregated multienergy virtual power plant (MEVPP) participating in both the day-ahead (DA) energy market and the frequency regulation reserve market (FRRM). To effectively address these uncertainties, we propose a two-stage scenario-oriented stochastic optimization model that aims to maximize revenue and minimize operational costs by incorporating risk management strategies. Then, a novel fast forward selection and simultaneous reduction (FFS&amp;SR) algorithm is proposed, which efficiently generates and refines scenarios, ensuring computational feasibility without compromising accuracy. The proposed VPP’s decision-making problem considers the VPP’s risk-averse nature, employing the conditional value at risk (CVaR) metric as a risk-aversion parameter. Simulation results conducted over a 24-h planning horizon validate the model’s performance, exhibiting superior performance in the bidding market scenarios. Furthermore, the numerical findings compare the risk-neutral VPP framework with the proposed risk-sensitive VPP strategy, revealing a trade-off between expected profit and CvaR, indicating that as the risk aversion parameter escalates, expected profits decline while CVaR value rises, underscoring the importance of risk management in VPP optimization.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/6640754","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/6640754","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The intermittent nature of distributed energy resources (DERs) has introduced significant challenges in power system operations, particularly in terms of flexibility, efficiency, and market participation. Aggregating DERs into a virtual power plant (VPP) offers a promising solution to these challenges, but it requires effective strategies to manage the inherent uncertainties and optimize operations across multiple energy markets. This paper develops an optimal bidding strategy for an aggregated multienergy virtual power plant (MEVPP) participating in both the day-ahead (DA) energy market and the frequency regulation reserve market (FRRM). To effectively address these uncertainties, we propose a two-stage scenario-oriented stochastic optimization model that aims to maximize revenue and minimize operational costs by incorporating risk management strategies. Then, a novel fast forward selection and simultaneous reduction (FFS&SR) algorithm is proposed, which efficiently generates and refines scenarios, ensuring computational feasibility without compromising accuracy. The proposed VPP’s decision-making problem considers the VPP’s risk-averse nature, employing the conditional value at risk (CVaR) metric as a risk-aversion parameter. Simulation results conducted over a 24-h planning horizon validate the model’s performance, exhibiting superior performance in the bidding market scenarios. Furthermore, the numerical findings compare the risk-neutral VPP framework with the proposed risk-sensitive VPP strategy, revealing a trade-off between expected profit and CvaR, indicating that as the risk aversion parameter escalates, expected profits decline while CVaR value rises, underscoring the importance of risk management in VPP optimization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信