网络攻击下孤岛微电网分布式层次控制器弹性分析

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdollah Mirzabeigi, Ali Kalantarnia, Negin Zarei
{"title":"网络攻击下孤岛微电网分布式层次控制器弹性分析","authors":"Abdollah Mirzabeigi,&nbsp;Ali Kalantarnia,&nbsp;Negin Zarei","doi":"10.1155/etep/9385286","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/9385286","citationCount":"0","resultStr":"{\"title\":\"Distributed Hierarchical Controller Resilience Analysis in Islanded Microgrid Under Cyber-Attacks\",\"authors\":\"Abdollah Mirzabeigi,&nbsp;Ali Kalantarnia,&nbsp;Negin Zarei\",\"doi\":\"10.1155/etep/9385286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/9385286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/etep/9385286\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/9385286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在孤岛微电网配置中,分布式发电机(dg)的同步变得势在必行。实现同步和控制需要建立通信链路。然而,沟通渠道容易受到各种挑战的影响,网络攻击成为主要问题。本文研究了协作分层控制器在面对各种网络攻击时的脆弱性,包括DoS攻击、传感器和执行器攻击以及劫持攻击。dg被认为是一个用于网络稳定和全局同步的多智能体系统。对从控制器的网络攻击进行了形式化描述,并设计了合适的控制器以保证系统的同步性和稳定性。引入适当的李雅普诺夫函数来证明其稳定性。然后,通过证明合适的定理,研究了系统的同步稳定条件和全局同步条件。通过MATLAB/Simulink仿真,结合网络攻击场景,进行了全面的案例研究。消除了网络攻击对该控制器的影响,并且dg是同步的。为了进行比较,我们使用了弹性指标。该控制器能很好地控制传感器的网络攻击和劫持攻击。DoS网络攻击比其他攻击更有效,并导致一些dg离开网络。此外,将此控制器与其他控制器进行比较,显示出其更大的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Hierarchical Controller Resilience Analysis in Islanded Microgrid Under Cyber-Attacks

In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信