{"title":"网络攻击下孤岛微电网分布式层次控制器弹性分析","authors":"Abdollah Mirzabeigi, Ali Kalantarnia, Negin Zarei","doi":"10.1155/etep/9385286","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/9385286","citationCount":"0","resultStr":"{\"title\":\"Distributed Hierarchical Controller Resilience Analysis in Islanded Microgrid Under Cyber-Attacks\",\"authors\":\"Abdollah Mirzabeigi, Ali Kalantarnia, Negin Zarei\",\"doi\":\"10.1155/etep/9385286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/9385286\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/etep/9385286\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/9385286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distributed Hierarchical Controller Resilience Analysis in Islanded Microgrid Under Cyber-Attacks
In islanded microgrid configurations, synchronization of distributed generators (DGs) becomes imperative. Achieving synchronization and control necessitates the establishment of communication links. However, communication channels are susceptible to various challenges, with cyber-attacks emerging as a primary concern. This paper examines the vulnerability of cooperative hierarchical controllers in the face of diverse cyber-attacks, including DoS, sensor and actuator attacks, and hijacking attacks. DGs are considered a multiagent system for stabilization and global synchronization of the network. Cyber-attacks on the secondary controller have been formalized, and an appropriate controller is designed for system synchronization and stability. The appropriate Lyapunov function is introduced to prove the stability. Then, the simultaneous stabilization and global synchronization conditions have been investigated by proving suitable theorems. A comprehensive case study is executed via simulation in MATLAB/Simulink, incorporating cyber-attack scenarios. The effects of cyber-attacks on this controller are eliminated, and the DGs are synchronized. For comparison, the resilience indicator has been used. In this controller, the cyber-attacks of the sensor and hijacking attack are well controlled. A DoS cyber-attack is more effective than other attacks and causes some DGs to go off the network. Also, comparing this controller to other controllers shows its greater resilience.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.