{"title":"Early Warning of Low-Frequency Oscillations in Power System Using Rough Set and Cloud Model","authors":"Miao Yu, Jinyang Han, Shuoshuo Tian, Jianqun Sun, Honghao Wu, Jiaxin Yan","doi":"10.1155/etep/7250421","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The stability of the power system is largely affected by low-frequency oscillations, so early warning research on low-frequency oscillations in power grids has become an urgent task. Traditional low-frequency oscillation early warning methods are still deficient in handling incomplete and highly discrete information. Compared with the existing methods, we have pioneered a synergistic mechanism of discrete attribute screening and continuous probabilistic feature fusion by combining the dynamic attribute approximation algorithm of rough sets with the cloud model, which effectively solves the loss of information caused by the discretization of continuous data in the traditional methods. Firstly, we analyze the principle of grid oscillation, use rough sets to process the raw data and indicators, remove redundant attributes, and get the set reflecting the relationship of different attributes. Then we construct a standard cloud based on grid operation data and a comprehensive cloud based on PMU data and obtain the oscillation warning evaluation. Finally, through the validation and simulation of 10 machine and 39 node systems in New England, as well as the comparison with other methods, the rationality and effectiveness of the proposed method are proved to be of theoretical and practical application value.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/7250421","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/7250421","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of the power system is largely affected by low-frequency oscillations, so early warning research on low-frequency oscillations in power grids has become an urgent task. Traditional low-frequency oscillation early warning methods are still deficient in handling incomplete and highly discrete information. Compared with the existing methods, we have pioneered a synergistic mechanism of discrete attribute screening and continuous probabilistic feature fusion by combining the dynamic attribute approximation algorithm of rough sets with the cloud model, which effectively solves the loss of information caused by the discretization of continuous data in the traditional methods. Firstly, we analyze the principle of grid oscillation, use rough sets to process the raw data and indicators, remove redundant attributes, and get the set reflecting the relationship of different attributes. Then we construct a standard cloud based on grid operation data and a comprehensive cloud based on PMU data and obtain the oscillation warning evaluation. Finally, through the validation and simulation of 10 machine and 39 node systems in New England, as well as the comparison with other methods, the rationality and effectiveness of the proposed method are proved to be of theoretical and practical application value.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.