N. Leonenko, Ž. Salinger, A. Sikorskii, N. Šuvak, M. Boivin
{"title":"Generalized Gaussian time series model for increments of EEG data","authors":"N. Leonenko, Ž. Salinger, A. Sikorskii, N. Šuvak, M. Boivin","doi":"10.4310/21-sii692","DOIUrl":"https://doi.org/10.4310/21-sii692","url":null,"abstract":"We propose a new strictly stationary time series model with marginal generalized Gaussian distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram (EEG) data collected from Ugandan children during coma from cerebral malaria. The model inherits its appealing properties from the strictly stationary strong mixing Markovian diffusion with invari-ant generalized Gaussian distribution (GGD). The GGD parametrization used in this paper comprises some famous light-tailed distributions (e.g., Laplace and Gaussian) and some well known and widely applied heavy-tailed distributions (e.g., Student). Two versions of this model fit to the data from each EEG channel. In the first model, marginal distributions is from the light-tailed GGD sub-family, and the distribution parameters were estimated using quasi-likelihood approach. In the second model, marginal distributions is heavy-tailed (Student), and the tail index was estimated using the approach based on the empirical scaling function. The estimated parameters from models across EEG channels were explored as potential predictors of neurocognitive outcomes of these children 6 months after recov-ering from illness. Several of these parameters were shown to be important predictors even after controlling for neurocognitive scores immediately following cerebral malaria illness and traditional blood and cerebrospinal fluid biomarkers collected during hospitalization.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71150765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compressing recurrent neural network models through principal component analysis","authors":"Haobo Qi, Jingxuan Cao, Shichong Chen, Jing Zhou","doi":"10.4310/22-sii727","DOIUrl":"https://doi.org/10.4310/22-sii727","url":null,"abstract":"","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71152092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple hypotheses testing on dependent count data with covariate effects","authors":"Weizhe Su, Xia Wang","doi":"10.4310/22-sii728","DOIUrl":"https://doi.org/10.4310/22-sii728","url":null,"abstract":"","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71152206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Zabihi Moghadam, M. Yarmohammadi, Hossein Hassani
{"title":"Modified recurrent forecasting in singular spectrum analysis using Kalman filter and its application for bicoid signal extraction","authors":"Reza Zabihi Moghadam, M. Yarmohammadi, Hossein Hassani","doi":"10.4310/22-sii723","DOIUrl":"https://doi.org/10.4310/22-sii723","url":null,"abstract":"","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71152379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating individualized treatment rules for multicategory type 2 diabetes treatments using electronic health records.","authors":"Jitong Lou, Yuanjia Wang, Lang Li, Donglin Zeng","doi":"10.4310/22-sii739","DOIUrl":"10.4310/22-sii739","url":null,"abstract":"<p><p>In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient's pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.</p>","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71152790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Clustering and Feature Selection for Categorical Time Series Using Interpretable Frequency-Domain Features.","authors":"Scott A Bruce","doi":"10.4310/22-sii755","DOIUrl":"10.4310/22-sii755","url":null,"abstract":"<p><p>This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.</p>","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9488249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hierarchical dynamic PARCOR models for analysis of multiple brain signals","authors":"Wenjie Zhao, R. Prado","doi":"10.4310/21-sii699","DOIUrl":"https://doi.org/10.4310/21-sii699","url":null,"abstract":"We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71151168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}