求助PDF
{"title":"Uniform consistency for local fitting of time series non-parametric regression allowing for discrete-valued response","authors":"Rong Peng, Zudi Lu","doi":"10.4310/22-sii745","DOIUrl":null,"url":null,"abstract":"Local linear kernel fitting is a popular nonparametric technique for modelling nonlinear time series data. Investigations into it, although extensively made for continuousvalued case, are still rare for the time series that are discrete-valued. In this paper, we propose and develop the uniform consistency of local linear maximum likelihood (LLML) fitting for time series regression allowing response to be discrete-valued under β-mixing dependence condition. Specifically, the uniform consistency of LLML estimators is established under time series conditional exponential family distributions with aid of a beta-mixing empirical process through local estimating equations. The rate of convergence is also provided under mild conditions. Performances of the proposed method are demonstrated by a Monte-Carlo simulation study and an application to COVID-19 data. There is a huge potential for the developed theory contributing to further development of discrete-valued response semiparametric time series models © 2022 American Psychological Association","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii745","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
允许离散值响应的时间序列非参数回归局部拟合的一致一致性
局部线性核拟合是一种常用的非线性时间序列数据建模方法。虽然对连续值的情况进行了广泛的研究,但对离散值的时间序列的研究仍然很少。本文提出并发展了时间序列回归的局部线性极大似然拟合的一致一致性,允许响应在β-混合依赖条件下为离散值。具体而言,通过局部估计方程,借助于β -混合经验过程,在时间序列条件指数族分布下建立了LLML估计量的一致相合性。在温和条件下也给出了收敛速度。通过蒙特卡罗仿真研究和COVID-19数据的应用验证了该方法的性能。发展的理论有巨大的潜力,有助于进一步发展离散值响应半参数时间序列模型©2022美国心理协会
本文章由计算机程序翻译,如有差异,请以英文原文为准。