{"title":"多脑信号分析的层次动态PARCOR模型","authors":"Wenjie Zhao, R. Prado","doi":"10.4310/21-sii699","DOIUrl":null,"url":null,"abstract":"We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical dynamic PARCOR models for analysis of multiple brain signals\",\"authors\":\"Wenjie Zhao, R. Prado\",\"doi\":\"10.4310/21-sii699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/21-sii699\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-sii699","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Hierarchical dynamic PARCOR models for analysis of multiple brain signals
We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.