N. Leonenko, Ž. Salinger, A. Sikorskii, N. Šuvak, M. Boivin
{"title":"脑电数据增量的广义高斯时间序列模型","authors":"N. Leonenko, Ž. Salinger, A. Sikorskii, N. Šuvak, M. Boivin","doi":"10.4310/21-sii692","DOIUrl":null,"url":null,"abstract":"We propose a new strictly stationary time series model with marginal generalized Gaussian distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram (EEG) data collected from Ugandan children during coma from cerebral malaria. The model inherits its appealing properties from the strictly stationary strong mixing Markovian diffusion with invari-ant generalized Gaussian distribution (GGD). The GGD parametrization used in this paper comprises some famous light-tailed distributions (e.g., Laplace and Gaussian) and some well known and widely applied heavy-tailed distributions (e.g., Student). Two versions of this model fit to the data from each EEG channel. In the first model, marginal distributions is from the light-tailed GGD sub-family, and the distribution parameters were estimated using quasi-likelihood approach. In the second model, marginal distributions is heavy-tailed (Student), and the tail index was estimated using the approach based on the empirical scaling function. The estimated parameters from models across EEG channels were explored as potential predictors of neurocognitive outcomes of these children 6 months after recov-ering from illness. Several of these parameters were shown to be important predictors even after controlling for neurocognitive scores immediately following cerebral malaria illness and traditional blood and cerebrospinal fluid biomarkers collected during hospitalization.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Gaussian time series model for increments of EEG data\",\"authors\":\"N. Leonenko, Ž. Salinger, A. Sikorskii, N. Šuvak, M. Boivin\",\"doi\":\"10.4310/21-sii692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new strictly stationary time series model with marginal generalized Gaussian distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram (EEG) data collected from Ugandan children during coma from cerebral malaria. The model inherits its appealing properties from the strictly stationary strong mixing Markovian diffusion with invari-ant generalized Gaussian distribution (GGD). The GGD parametrization used in this paper comprises some famous light-tailed distributions (e.g., Laplace and Gaussian) and some well known and widely applied heavy-tailed distributions (e.g., Student). Two versions of this model fit to the data from each EEG channel. In the first model, marginal distributions is from the light-tailed GGD sub-family, and the distribution parameters were estimated using quasi-likelihood approach. In the second model, marginal distributions is heavy-tailed (Student), and the tail index was estimated using the approach based on the empirical scaling function. The estimated parameters from models across EEG channels were explored as potential predictors of neurocognitive outcomes of these children 6 months after recov-ering from illness. Several of these parameters were shown to be important predictors even after controlling for neurocognitive scores immediately following cerebral malaria illness and traditional blood and cerebrospinal fluid biomarkers collected during hospitalization.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/21-sii692\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-sii692","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Generalized Gaussian time series model for increments of EEG data
We propose a new strictly stationary time series model with marginal generalized Gaussian distribution and exponentially decaying autocorrelation function for modeling of increments of electroencephalogram (EEG) data collected from Ugandan children during coma from cerebral malaria. The model inherits its appealing properties from the strictly stationary strong mixing Markovian diffusion with invari-ant generalized Gaussian distribution (GGD). The GGD parametrization used in this paper comprises some famous light-tailed distributions (e.g., Laplace and Gaussian) and some well known and widely applied heavy-tailed distributions (e.g., Student). Two versions of this model fit to the data from each EEG channel. In the first model, marginal distributions is from the light-tailed GGD sub-family, and the distribution parameters were estimated using quasi-likelihood approach. In the second model, marginal distributions is heavy-tailed (Student), and the tail index was estimated using the approach based on the empirical scaling function. The estimated parameters from models across EEG channels were explored as potential predictors of neurocognitive outcomes of these children 6 months after recov-ering from illness. Several of these parameters were shown to be important predictors even after controlling for neurocognitive scores immediately following cerebral malaria illness and traditional blood and cerebrospinal fluid biomarkers collected during hospitalization.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.