利用电子健康记录估算 2 型糖尿病多类别治疗的个性化治疗规则。

Pub Date : 2023-01-01 Epub Date: 2023-04-14 DOI:10.4310/22-sii739
Jitong Lou, Yuanjia Wang, Lang Li, Donglin Zeng
{"title":"利用电子健康记录估算 2 型糖尿病多类别治疗的个性化治疗规则。","authors":"Jitong Lou, Yuanjia Wang, Lang Li, Donglin Zeng","doi":"10.4310/22-sii739","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient's pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating individualized treatment rules for multicategory type 2 diabetes treatments using electronic health records.\",\"authors\":\"Jitong Lou, Yuanjia Wang, Lang Li, Donglin Zeng\",\"doi\":\"10.4310/22-sii739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient's pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个利用电子健康记录(EHR)学习 2 型糖尿病(T2D)患者最佳治疗规则的通用框架。我们首先提出了一种联合建模方法,利用电子健康记录的纵向标记来描述患者的治疗前情况。估计时使用反强度加权法考虑了信息测量时间。联合模型中预测的潜在过程被用来将患者分成有限的几个亚组,在每个亚组里,患者在电子病历中都有相似的健康状况。在每个患者组内,我们通过扩展匹配学习方法来估算最佳个体化治疗规则,从而使用一对一方法处理多类别治疗。针对两种治疗方法的每种匹配学习都是通过加权支持向量机与匹配的患者对来实现的。我们应用我们的方法估算了俄亥俄州立大学韦克斯纳医疗中心大量电子病历样本中 T2D 患者的最佳治疗规则。我们证明了我们的方法的实用性,它能从四类药物中选择最佳治疗方法,比任何 "一刀切 "的规则都能更好地控制糖化血红蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Estimating individualized treatment rules for multicategory type 2 diabetes treatments using electronic health records.

In this article, we propose a general framework to learn optimal treatment rules for type 2 diabetes (T2D) patients using electronic health records (EHRs). We first propose a joint modeling approach to characterize patient's pretreatment conditions using longitudinal markers from EHRs. The estimation accounts for informative measurement times using inverse-intensity weighting methods. The predicted latent processes in the joint model are used to divide patients into a finite of subgroups and, within each group, patients share similar health profiles in EHRs. Within each patient group, we estimate optimal individualized treatment rules by extending a matched learning method to handle multicategory treatments using a one-versus-one approach. Each matched learning for two treatments is implemented by a weighted support vector machine with matched pairs of patients. We apply our method to estimate optimal treatment rules for T2D patients in a large sample of EHRs from the Ohio State University Wexner Medical Center. We demonstrate the utility of our method to select the optimal treatments from four classes of drugs and achieve a better control of glycated hemoglobin than any one-size-fits-all rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信