使用可解释的频域特征对分类时间序列进行自适应聚类和特征选择。

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Statistics and Its Interface Pub Date : 2023-01-01 Epub Date: 2023-04-13 DOI:10.4310/22-sii755
Scott A Bruce
{"title":"使用可解释的频域特征对分类时间序列进行自适应聚类和特征选择。","authors":"Scott A Bruce","doi":"10.4310/22-sii755","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.</p>","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"16 2","pages":"319-335"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adaptive Clustering and Feature Selection for Categorical Time Series Using Interpretable Frequency-Domain Features.\",\"authors\":\"Scott A Bruce\",\"doi\":\"10.4310/22-sii755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.</p>\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"16 2\",\"pages\":\"319-335\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii755\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii755","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种通过可解释频域特征对分类时间序列进行聚类和特征选择的新方法。文章介绍了一种基于频谱包络和最优标度的距离测量方法,它能简明地描述分类时间序列中突出的周期模式。利用这一距离,引入了分区聚类算法,对分类时间序列进行精确聚类。当时间序列表现出与多个聚类的相似性时,这些自适应程序可同时提供特征选择,以识别区分聚类的重要特征和模糊成员资格。对所提出方法的聚类一致性进行了研究,并利用模拟研究来证明各种基本组结构的聚类准确性。建议的方法用于对睡眠障碍患者的睡眠阶段时间序列进行聚类,以识别与睡眠中断相关的特殊振荡模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Clustering and Feature Selection for Categorical Time Series Using Interpretable Frequency-Domain Features.

This article presents a novel approach to clustering and feature selection for categorical time series via interpretable frequency-domain features. A distance measure is introduced based on the spectral envelope and optimal scalings, which parsimoniously characterize prominent cyclical patterns in categorical time series. Using this distance, partitional clustering algorithms are introduced for accurately clustering categorical time series. These adaptive procedures offer simultaneous feature selection for identifying important features that distinguish clusters and fuzzy membership when time series exhibit similarities to multiple clusters. Clustering consistency of the proposed methods is investigated, and simulation studies are used to demonstrate clustering accuracy with various underlying group structures. The proposed methods are used to cluster sleep stage time series for sleep disorder patients in order to identify particular oscillatory patterns associated with sleep disruption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信