Hierarchical dynamic PARCOR models for analysis of multiple brain signals

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Wenjie Zhao, R. Prado
{"title":"Hierarchical dynamic PARCOR models for analysis of multiple brain signals","authors":"Wenjie Zhao, R. Prado","doi":"10.4310/21-sii699","DOIUrl":null,"url":null,"abstract":"We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-sii699","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient hierarchical model for inferring latent structure underlying multiple non-stationary time series. The proposed model describes the time-varying behavior of multiple time series in the partial autocorrelation domain, which results in a lower dimensional representation, and consequently computationally faster inference, than those required by models in the time and/or frequency domains, such as time-varying autoregressive models, which are commonly used in practice. We illustrate the performance of the proposed hierarchical dynamic PARCOR models and corresponding Bayesian inferential procedures in the context of analyzing multiple brain signals recorded simultaneously during specific experimental settings or clinical studies. The proposed approach allows us to efficiently obtain posterior summaries of the time-frequency characteristics of the multiple time series, as well as those summarizing their common underlying structure.
多脑信号分析的层次动态PARCOR模型
我们提出了一种有效的层次模型来推断多个非平稳时间序列的潜在结构。该模型描述了多个时间序列在部分自相关域中的时变行为,与实际中常用的时间和/或频率域的模型(如时变自回归模型)相比,该模型具有较低的维数表示,因此计算速度更快。我们举例说明了所提出的分层动态PARCOR模型和相应的贝叶斯推理程序在分析特定实验设置或临床研究中同时记录的多个脑信号的背景下的性能。所提出的方法使我们能够有效地获得多个时间序列的时频特性的后验总结,以及总结其共同底层结构的后验总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信