{"title":"Tackling hepatitis B Virus with CRISPR/Cas9: advances, challenges, and delivery strategies.","authors":"Dakshina M Nair, Leela Kakithakara Vajravelu, Jayaprakash Thulukanam, Vishnupriya Paneerselvam, Poornima Baskar Vimala, Rahul Harikumar Lathakumari","doi":"10.1007/s11262-024-02105-3","DOIUrl":"10.1007/s11262-024-02105-3","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) infection remains a significant global health challenge, with chronic HBV leading to severe liver diseases, including cirrhosis and hepatocellular carcinoma. Current treatments often fail to eradicate the virus, highlighting the need for innovative therapeutic strategies. The CRISPR/Cas9 system has emerged as a dynamic tool for precise genome editing and presents a promising approach to targeting and eliminating HBV infection. This review provides a comprehensive overview of the advances, challenges, and delivery strategies associated with CRISPR/Cas9-based therapies for HBV. We begin by elucidating the mechanism of the CRISPR/Cas9 system and then explore HBV pathogenesis, focusing on the role of covalently closed circular DNA (cccDNA) and integrated HBV DNA in maintaining chronic infection. CRISPR/Cas9 can disrupt these key viral reservoirs, which are critical for persistent HBV replication and associated liver damage. The application of CRISPR/Cas9 in HBV treatment faces significant challenges, such as off-target effects, delivery efficiency, and immune responses. These challenges are addressed by examining current approaches to enhance the specificity, safety, and efficacy of CRISPR/Cas9. A future perspective on the development and clinical translation of CRISPR/Cas9 therapies for HBV is provided, emphasizing the requirement for further research to improve delivery methods and ensure durable safety and effectiveness. This review underscores the transformative potential of CRISPR/Cas9 in combating HBV and sets the stage for future breakthroughs in the field.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"592-602"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-22DOI: 10.1007/s11262-024-02102-6
Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen
{"title":"Advances in the study of LNPs for mRNA delivery and clinical applications.","authors":"Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen","doi":"10.1007/s11262-024-02102-6","DOIUrl":"10.1007/s11262-024-02102-6","url":null,"abstract":"<p><p>Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"577-591"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells.","authors":"Lijun Song, Peicheng Zhong, Runyu Yu, Yue Yuan, Yujing Zhou, Yupei Qian, Siyan Yang, Haosen Yi, Zhiyan Yang, Wenchang Zhao","doi":"10.1007/s11262-024-02104-4","DOIUrl":"10.1007/s11262-024-02104-4","url":null,"abstract":"<p><p>Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"621-634"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porcine epidemic diarrhea virus E protein induces unfolded protein response through activating both PERK and ATF6 rather than IRE1 signaling pathway.","authors":"Liang Zheng, Ying Yang, Mingxin Ma, Qin Hu, Zhijun Wu, Matthew Kay, Xiaoge Yang, Liwei Yin, Fusheng Ding, Hua Zhang","doi":"10.1007/s11262-024-02108-0","DOIUrl":"10.1007/s11262-024-02108-0","url":null,"abstract":"<p><p>Porcine epidemic diarrhea virus (PEDV) small envelope protein (E) plays important roles in virus budding, assembly, and release. Our previous study found that PEDV E protein localizes in the endoplasmic reticulum (ER) to trigger the unfolded protein response (UPR). However, how UPR is directly regulated by PEDV E protein remains elusive. Thus, in this study, we investigated the expression of ER chaperone glucose-regulated protein 78 (GRP78) and activations of the three main UPR signaling pathways to elucidate the underlying mechanisms of UPR triggered by PEDV E protein. The results showed that over-expression of PEDV E protein increased expression of GRP78 and induced stronger phosphorylation of both protein kinase RNA-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), as well as caused the significant degradation of activating transcription factor 6 (ATF6), in both dose- and time-dependent manners. However, PEDV E protein did not induce UPR through the inositol-requiring enzyme 1 (IRE1) signaling pathway, as revealed by the splicing of XBP1 remaining unaffected and unchanged when PEDV E protein was overexpressed. Taken together, these results demonstrate that PEDV E protein induces UPR through activation of both PERK and ATF6 pathways rather than IRE1 signaling. This study not only provides mechanistic details of UPR induced by the PEDV E protein, but also provides insights into these new biologic functions to help us better understand the interactions between PEDV and host cells.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"652-666"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-10-06DOI: 10.1007/s11262-024-02111-5
Leyuan Zhu, Lixia Xu, Wangtai Luo, Qingying Lai, Zhenqiu Huang, Meijin Yuan, Wenbi Wu, Kai Yang
{"title":"The conserved cysteines at position 18, 36, and 49 of Autographa californica multiple nucleopolyhedrovirus VP39 are essential for virus replication.","authors":"Leyuan Zhu, Lixia Xu, Wangtai Luo, Qingying Lai, Zhenqiu Huang, Meijin Yuan, Wenbi Wu, Kai Yang","doi":"10.1007/s11262-024-02111-5","DOIUrl":"10.1007/s11262-024-02111-5","url":null,"abstract":"<p><p>Autographa californica nucleopolyhedrovirus orf89 (vp39) encodes the major capsid protein VP39. Multiple alignments of protein sequences showed that VP39 has 8 conserved cysteine (Cys) residues. Cysteine residues play an important role in proper function of a protein. To determine the importance of these conserved cysteine residues for virus proliferation, a series of recombinant viruses harboring VP39-Cys mutants were constructed. Viral growth curves and transmission electron microscopy showed that mutation of Cys29, Cys132, Cys169, Cys229, or Cys232 of VP39 to alanine did not affect budded virion production; however, the mutation of Cys18, Cys36, or Cys49 to alanine resulted in interruption of capsid assembly. Co-immunoprecipitation assays showed that mutations of these 8 cysteines individually or simultaneously had no effect on self-association of VP39. Immunofluorescence analysis by confocal microscopy revealed that the subcellular localization of VP39 with mutations in Cys18, Cys36 or Cys49 was exclusively distributed in the cytoplasm of a cell regardless of virus infection or not, while the wild-type VP39 or the VP39 carrying mutations in Cys29, Cys132, Cys169, Cys229, or Cys232 was distributed throughout the cytoplasm and the nucleus. Our results demonstrated that Cys18, Cys36, and Cys49 are essential for the proper localization of VP39, which is a prerequisite for successful nucleocapsid assembly of the virus.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"711-724"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-16DOI: 10.1007/s11262-024-02098-z
Momoko Matsuyama, Yasuhiro Tomitaka
{"title":"Molecular characterization and comparison of tomato zonate spot virus isolated in Japan and China.","authors":"Momoko Matsuyama, Yasuhiro Tomitaka","doi":"10.1007/s11262-024-02098-z","DOIUrl":"10.1007/s11262-024-02098-z","url":null,"abstract":"<p><p>The complete genome sequence of Orthotospovirus tomatozonae (tomato zonate spot virus, TZSV) isolated in Japan was determined and compared with that of Chinese isolates. The lengths of the S, M, and L segments of the RNA genomes of the Japanese isolate (TZSV-TZ1-3) were 3194, 4675, and 8916 nucleotides, respectively, which were similar to the Chinese isolates. Moreover, the eight motifs on the RNA-dependent RNA polymerase (RdRp) gene were conserved in both TZSV-TZ1-3 and Chinese TZSV isolates (TZSV-Bidens and TZSV-Tomato-YN). The nucleotide identity of the genes among the TZSV isolates was more than 94%, indicating low diversity among viruses. The phylogenetic analysis and the prediction of the cleavage sites in the glycoprotein showed that the TZSV-TZ1-3 isolate was closely related to TZSV-Tomato-YN isolated from China. However, there were unique frameshifts and deletions on the RdRp and glycoprotein genes of the TZSV-Tomato-YN isolate, suggesting that both isolates were genetically distinct. The findings of this study indicate that the TZSV-TZ1-3 isolate originated in China and show the sequence diversity among TZSV isolates.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"674-683"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-20DOI: 10.1007/s11262-024-02101-7
Takao Ito
{"title":"First reports of several viruses and a viroid including a novel vitivirus in Japan, found through virome analysis of bulk grape genetic resources.","authors":"Takao Ito","doi":"10.1007/s11262-024-02101-7","DOIUrl":"10.1007/s11262-024-02101-7","url":null,"abstract":"<p><p>Virome analysis was performed on 174 grape genetic resources from the National Agriculture and Food Research Organization, Japan. A total of 20 bulk samples was prepared by grouping the vines into batches of 6-10 plants. Each of the bulk samples was analyzed using high-throughput sequencing, which detected 27 viruses and 5 viroids, including six viruses and one viroid reported in Japan for the first time (grapevine viruses F, L, and T, grapevine Kizil Sapak virus, grapevine Syrah virus 1, grapevine satellite virus, and grapevine yellow speckle viroid 2). In addition, a novel vitivirus was detected with a maximum nucleotide sequence identity of only 58% to its closest relative, grapevine virus A (GVA). The genome of this novel virus was 7,461 nucleotides in length and encoded five open reading frames showing the typical genomic structure of vitiviruses. Phylogenetic trees of vitiviruses placed it in a distinct position nearest to GVA or grapevine virus F (GVF) in genomes and amino acids of deduced replication-associated protein (RAP) and coat protein (CP). The amino acid sequence identities of RAP and CP with GVA, GVF, and other vitiviruses were a maximum of 53% and 73%, respectively, which were significantly below the species demarcation threshold of 80% in the genus. The low identity and phylogenetic analyses indicate the discovery of a novel vitivirus species provisionally named grapevine virus P.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"684-694"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new isolate of mungbean yellow mosaic India virus in Vigna mungo L. reported from a Dayalbagh field, Agra.","authors":"Ambika Chaturvedi, Dipinte Gupta, Bikash Mandal, Rajiv Ranjan","doi":"10.1007/s11262-024-02099-y","DOIUrl":"10.1007/s11262-024-02099-y","url":null,"abstract":"<p><p>Black gram (Vigna mungo L.) plants showing yellow mosaic symptoms during 2019-2022 crop seasons were collected randomly from a Dayalbagh field, Agra Region of Uttar Pradesh, India. Total genomic DNA was isolated from the infected leaf samples by the Cetyltrimethylammonium bromide (CTAB) method and subjected to PCR. After viral confirmation, the viral genome was amplified by rolling circle amplification following the standard protocol. The DNA A and DNA B subgenomes were cloned individually as a PstI and BamHI fragment in the pUC18 vector. Positive clones were subjected to DNA sequencing. The results revealed that DNA A and DNA B show the closest nucleotide identity with \"mungbean yellow mosaic India virus-[Mungbean], DNA-A, the complete sequence\" (GeneBank Accession No AF416742.1) with 98.14% identity, and \"mungbean yellow mosaic India virus isolate Mu1-Dholi segment DNA-B, the complete sequence\" (GeneBank Accession No MW814723.1) with 97.94% identity, respectively. The new isolate of mungbean yellow mosaic India virus (MYMIV) shows sequence similarity with the coat protein gene of various strains of MYMIV. In the new isolate of MYMIV, a point mutation was observed at the 2036th nucleotide of DNA B, which disrupts the reading frame to introduce a stop codon and thus leading to a decrease in the size of the movement protein gene. In the present study we are reporting the whole genome sequence of the MYMIV Dayalbagh isolate for the first time.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"747-751"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-08-28DOI: 10.1007/s11262-024-02100-8
Aziz Ul-Rahman, Muhammad Zubair Shabbir, Majeeda Rasheed, Nusrat Shafi, Kalsoom AbdulRazaq, Hamna Ramzan, Rauf Mehmood, Junaid Ali Khan
{"title":"Comparative genomics and evolutionary analysis of dengue virus strains circulating in Pakistan.","authors":"Aziz Ul-Rahman, Muhammad Zubair Shabbir, Majeeda Rasheed, Nusrat Shafi, Kalsoom AbdulRazaq, Hamna Ramzan, Rauf Mehmood, Junaid Ali Khan","doi":"10.1007/s11262-024-02100-8","DOIUrl":"10.1007/s11262-024-02100-8","url":null,"abstract":"<p><p>Dengue fever virus (DENV) poses a significant public health risk in tropical and subtropical regions across the world. Although the dengue fever virus (DENV) exhibits significant genetic diversity and has the potential to evolve, there is a lack of comprehensive research on the comparative genomics and evolutionary dynamics of the virus in Pakistan. Phylogenetic analysis demonstrated the circulation of all four dengue virus serotypes (DENV-1, - 2, - 3, and - 4) with prevalent genotypes III and V within DENV-1, cosmopolitan genotype within DENV-2, genotype III within DENV-3, and genotype I within DENV-4 during 2006-2014. Based on the complete envelope region, genome-wide residue signature and genetic diversity indicate that there is a high level of genetic diversity among DENV-1 strains, while DENV-3 strains exhibit the least genetic diversity. Comparative analysis of all four DENV serotypes revealed that certain codons in DENV-2 and -4 were subject to strong purifying selection, while a few codon sites in the envelope region showed evidence of positive selection. These findings provided valuable insights into the comparative genomics and evolutionary pattern of DENV strains reported from Pakistan. Whether those characteristics conferred a fitness advantage to DENV-1 genotypes within a specific geography and time interval warrants further investigations. The findings of the current study will contribute to tracking disease dynamics, understanding virus transmission and evolution, and formulating effective disease control strategies.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"603-620"},"PeriodicalIF":1.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-12-01Epub Date: 2024-10-08DOI: 10.1007/s11262-024-02112-4
Bianca Hough, Brenda Wingfield, David Read
{"title":"Identification and characterization of mycoviruses in transcriptomes from the fungal family ceratocystidaceae.","authors":"Bianca Hough, Brenda Wingfield, David Read","doi":"10.1007/s11262-024-02112-4","DOIUrl":"10.1007/s11262-024-02112-4","url":null,"abstract":"<p><p>Mycoviruses pervade the fungal kingdom, yet their diversity within various fungal families and genera remains largely unexplored. In this study, 10 publicly available fungal transcriptomes from Ceratocystidaceae were analyzed for the presence of mycoviruses. Despite mycovirus associations being known in only four members of this family, our investigation unveiled the discovery of six novel mycoviruses. The majority of these mycoviruses are composed of positive sense single stranded RNA and are putatively assigned to the viral family Mitoviridae (with tentative classification into the genera Unuamitovirus and Duamitovirus). The double stranded RNA viruses, however, were associated with the family Totiviridae (with tentative classification into the genus Victorivirus). This study also revealed the discovery of an identical unuamitovirus in the fungal species Thielaviopsis ethacetica and Thielaviopsis paradoxa. This discovery was notable as these fungal isolates originated from distinct geographical locations, highlighting potential implications for the transmission of this mitovirus. Moreover, this investigation significantly expands the known host range for mycoviruses in this family, marking the initial identification of mycoviruses within Ceratocystis platani, Thielaviopsis paradoxa, Thielaviopsis ethacetica, and Huntiella omanensis. Future research should focus on determining the effects that these mycoviruses might have on their fungal hosts.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"696-710"},"PeriodicalIF":16.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}