{"title":"Donkey-like kirkovirus is associated with diarrhea in piglets.","authors":"Panpan Tong, Zunbao Wang, Yueyi Dang, Lei Zhang, Guangwei Song, Xiaozhen Song, Juanjuan Pan, Ling Kuang, Junhui Li, Gang Lu, Jinxin Xie","doi":"10.1007/s11262-024-02066-7","DOIUrl":"10.1007/s11262-024-02066-7","url":null,"abstract":"<p><p>Kirkovirus (kirV), a seemingly novel virus family, has been found in horses and donkeys. The study's objectives are to investigate the presence of the virus in swine. In this study, donkey-like kirV was detected in rectal swabs of piglets with diarrhea, and the positive rate was found to be 100% (149/149). However, this virus was detected in only one of 261 clinically healthy piglets, which suggested a strong relationship between the kirV and the diarrheic disease. We obtained the whole-genome sequences of three kirVs (Cj-D5, Cj-D32, and Cj-D43), with a length of 3750 nucleotides (nt) and sharing 99.9% nt identity with donkey kirVs. Furthermore, the three viruses shared 88.5-100% and 23-51% of the Rep protein sequence, similar to available reference strains of Kirkoviridae and Circoviridae, respectively. Moreover, like horse and donkey kirVs, the RCR domain and P-loop NTPase domains of Rep protein and nonanucleotide motif (CAATATTAC) of the three viruses were similar to those of Circoviruses and Cycloviruses. Phylogenetic analysis showed that these viruses could be grouped with members in the proposed family Kirkoviridae. This is the first report to describe that kirV can circulate in piglets with diarrhea, and future studies are needed to determine the pathogenesis of this virus.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"314-319"},"PeriodicalIF":1.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-06-01Epub Date: 2024-03-15DOI: 10.1007/s11262-024-02063-w
Ilke Karayel-Hacioglu, Buket Gul, Deniz Acun Yildiz, Feray Alkan
{"title":"Ovine adenoviruses infecting sheep and goats in Türkiye: detection and molecular characterization of three different types.","authors":"Ilke Karayel-Hacioglu, Buket Gul, Deniz Acun Yildiz, Feray Alkan","doi":"10.1007/s11262-024-02063-w","DOIUrl":"10.1007/s11262-024-02063-w","url":null,"abstract":"<p><p>Adenoviruses (AdVs) have been detected in a wide variety of animals. To date, eight types of AdVs in sheep and two types in goats have been identified, which belong to two distinct genera, Mastadenovirus and Atadenovirus. Typically, the term pneumo-enteritis is used to describe adenovirus-induced disease in small ruminants, which has been associated with both enteric and respiratory symptoms of varying severity. The aim of this study was to detect and identify AdVs of small ruminants belonging to the genera Mastadenovirus and Atadenovirus. For this purpose, diagnostic samples (47 lung, 27 intestine, and two pooled tissue samples including intestine and lung) from 49 small ruminants (39 sheep and 10 goats) were used. Following the viral DNA extraction, PCR was carried out by using the primers targeting the hexon gene in order to detect both mast- and atadenoviruses. Sequencing the amplified fragments revealed the presence of three types of ovine adenovirus (OAdV): OAdV-3, OAdV-4, and OAdV-8. Specifically, OAdV-3 was detected in two sheep and a goat while OAdV-4 and OAdV-8 were found in only one sheep each. There is still limited data on the interaction between the viruses in different adenovirus genera and the detected disease, as well as the genetic diversity of adenoviruses, especially in small ruminants. In conclusion, the detection of AdVs in lung and intestinal tissues of small ruminants in this study suggests that these viruses may have contributed to the disease and/or predisposed to other agents.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"309-313"},"PeriodicalIF":1.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leucoma salicis nucleopolyhedrovirus (LesaNPV) genome sequence shed new light on the origin of the Alphabaculovirus orpseudotsugatae species","authors":"Martyna Krejmer-Rabalska, Lukasz Rabalski, Maciej Kosinski, Iwona Skrzecz, Jadwiga Ziemnicka, Boguslaw Szewczyk","doi":"10.1007/s11262-024-02062-x","DOIUrl":"https://doi.org/10.1007/s11262-024-02062-x","url":null,"abstract":"<p>LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth <i>Leucoma salicis</i> population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of <i>Baculoviridae</i> family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species <i>Alphabaculovirus orpseudotsugatae,</i> historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-09DOI: 10.1007/s11262-024-02064-9
Qingshan Wu, Ni An, Zheng Fang, Shixia Li, Lan Xiang, Qiuping Liu, Leitao Tan, Qingbei Weng
{"title":"Characteristics and whole-genome analysis of a novel Pseudomonas syringae pv. tomato bacteriophage D6 isolated from a karst cave","authors":"Qingshan Wu, Ni An, Zheng Fang, Shixia Li, Lan Xiang, Qiuping Liu, Leitao Tan, Qingbei Weng","doi":"10.1007/s11262-024-02064-9","DOIUrl":"https://doi.org/10.1007/s11262-024-02064-9","url":null,"abstract":"<p><i>Pseudomonas syringae</i> is a gram-negative plant pathogen that infects plants such as tomato and poses a threat to global crop production. In this study, a novel lytic phage infecting <i>P. syringae</i> pv. <i>tomato</i> DC3000, named phage D6, was isolated and characterized from sediments in a karst cave. The latent period of phage D6 was found to be 60 min, with a burst size of 16 plaque-forming units per cell. Phage D6 was stable at temperatures between 4 and 40 °C but lost infectivity when heated to 70 °C. Its infectivity was unaffected at pH 6–10 but became inactivated at pH ≤ 5 or ≥ 12. The genome of phage D6 is a linear double-stranded DNA of 307,402 bp with a G + C content of 48.43%. There is a codon preference between phage D6 and its host, and the translation of phage D6 gene may not be entirely dependent on the tRNA library provided by the host. A total of 410 open reading frames (ORFs) and 14 tRNAs were predicted in its genome, with 92 ORFs encoding proteins with predicted functions. Phage D6 showed low genomic similarity to known phage genomes in the GenBank and Viral sequence databases. Genomic and phylogenetic analyses revealed that phage D6 is a novel phage. The tomato plants were first injected with phage D6, and subsequently with <i>Pst</i> DC3000, using the foliar spraying and root drenching inoculum approach. Results obtained after 14 days indicated that phage D6 inoculation decreased <i>P. syringae-</i>induced symptoms in tomato leaves and inhibited the pathogen’s growth in the leaves. The amount of <i>Pst</i> DC3000 was reduced by 150- and 263-fold, respectively. In conclusion, the lytic phage D6 identified in this study belongs to a novel phage within the <i>Caudoviricetes</i> class and has potential for use in biological control of plant diseases.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":"41 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-08DOI: 10.1007/s11262-024-02067-6
Kyeongbin Baek, Dongbum Kim, Jinsoo Kim, Bo Min Kang, Heedo Park, Sangkyu Park, Ha-Eun Shin, Myeong-Heon Lee, Sony Maharjan, Minyoung Kim, Suyeon Kim, Man-Seong Park, Younghee Lee, Hyung-Joo Kwon
{"title":"Analysis of SARS-CoV-2 omicron mutations that emerged during long-term replication in a lung cancer xenograft mouse model","authors":"Kyeongbin Baek, Dongbum Kim, Jinsoo Kim, Bo Min Kang, Heedo Park, Sangkyu Park, Ha-Eun Shin, Myeong-Heon Lee, Sony Maharjan, Minyoung Kim, Suyeon Kim, Man-Seong Park, Younghee Lee, Hyung-Joo Kwon","doi":"10.1007/s11262-024-02067-6","DOIUrl":"https://doi.org/10.1007/s11262-024-02067-6","url":null,"abstract":"<p>SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":"314 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-03DOI: 10.1007/s11262-024-02065-8
{"title":"Potentials as biomarker and therapeutic target of upregulated long non-coding RNA HLA-F antisense RNA 1 in hepatitis B virus-associated hepatocellular carcinoma","authors":"","doi":"10.1007/s11262-024-02065-8","DOIUrl":"https://doi.org/10.1007/s11262-024-02065-8","url":null,"abstract":"<h3>Abstract</h3> <p>The tissue-specific characteristics have encouraged researchers to identify organ-specific lncRNAs as disease biomarkers. This study aimed to identify the clinical and functional roles of long non-coding RNA HLA-F antisense RNA 1 (HLA-F-AS1) in hepatitis B virus (HBV)-hepatocellular carcinoma (HCC). A total of 121 HBV-HCC, 81 chronic hepatitis B (CHB), and 85 normal liver tissues were evaluated in this study. Real-time quantitative PCR assay was used to evaluate the RNA expression levels. Performance in diagnosis was compared between alpha fetoprotein (AFP) and HLA-F-AS1 using Receiver Operating Characteristic (ROC) curves. Performance in post-hepatectomy prognosis with high or low HLA-F-AS1 was compared using Kaplan–Meier curves. Multi-variable analysis was used to determine the informative predictors. Downstream miRNAs for HLA-F-AS1 were predicted and miR-128-3p was confirmed by luciferase reporter assay and RNA pull-down assay. In vitro functional analysis was performed by MTS reagent for cell proliferation and transwell assay for cell migration. HLA-F-AS1 levels were significantly increased in the HBV-HCC compared to normal healthy tissue and CHB tissues. HLA-F-AS1 exhibited a well potential in making a distinction between HBV-HCC and health, as well as HBV-HCC and CHB. The survival analysis revealed that patients with high levels of HLA-F-AS1 tend to shorter overall survival times. The best prognostic performance was achieved by HLA-F-AS1 after multi-variable analysis (HR 2.290, 95% CI 1.191–4.403, <em>p</em> = 0.013). Functional analysis showed that HLA-F-AS1 promoted cell proliferation and migration via miR-128-3p. Up-regulation of HLA-F-AS1 could serve as a promising diagnostic and prognostic marker for HBV-HCC after surgery, maybe useful in the management of HBV-HCC patients. HLA-F-AS1 can promote the progression of HBV-HCC, may be useful in the targeting treatment of HBV-HCC patients.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":"32 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140561962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of molecular epidemiologic pattern of human T-lymphotropic virus type 1 (HTLV-1) in Alborz province, Iran.","authors":"Mahshid Safavi, Fariba Habibian-Sezavar, Arash Letafati, Setayesh Solouki, Somayeh Yaslianifard, Parisa Kaboli, Mohammad Mohammadzadeh, Kourosh Kabir, Mehrdad Sadeghi Haj, Sayed-Hamidreza Mozhgani","doi":"10.1007/s11262-024-02051-0","DOIUrl":"10.1007/s11262-024-02051-0","url":null,"abstract":"<p><p>Human T-cell lymphotropic virus type 1 (HTLV-1) is linked to two debilitating diseases, adult T-cell leukemia/lymphoma (ATLL) and HTLV-1 associated myelopathy tropical spastic paraparesis (HAM/TSP), which are prevalent in various parts of the world, including the Alborz province in Iran. Understanding the prevalence and evolutionary relationships of HTLV-1 infections in these endemic areas is of utmost importance. In the realm of phylogenetic studies, long terminal repeat (LTR) region of HTLV-1 stands out as highly conserved, yet more variable compared to other gene segments. Consequently, it is the primary focus for phylogenetic analyses. Additionally, trans-activator of transcription (Tax), an oncoprotein, holds a pivotal role in the regulation of gene expression. This cross-sectional study delved into the phylogenetic analysis of HTLV-1 among individuals in Alborz province of Iran. To confirm infection, we amplified partial sequence LTR (PLTR) and HTLV-1 bZIP factor (PHBZ). For phylogenetic analysis, we sequenced the full sequence LTR (FLTR) and full Tax sequence (FTax). The FLTR and FTax sequences underwent analysis using BioEdit, and phylogenetic trees were constructed using MEGA-X software. Out of the roughly 15,000 annual blood donors in Alborz, 19 samples tested positive for HTLV-1, indicating a 0.13% HTLV-1 positivity rate among blood donors. Furthermore, the HTLV-1 virus prevalent in the Alborz province belongs to subtype A (cosmopolitan) subgroup A. The findings revealed that while mutations were observed in both the LTR and Tax genes, they were not significant enough to bring about fundamental alterations. Despite positive selection detected in three Alborz isolates, it has not led to mutations affecting Tax function and virulence.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"117-125"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-01Epub Date: 2024-02-10DOI: 10.1007/s11262-024-02054-x
Brent A Stanfield, Emmanuelle Ruiz, Vladimir N Chouljenko, Konstantin G Kousoulas
{"title":"Guinea pig herpes like virus is a gamma herpesvirus.","authors":"Brent A Stanfield, Emmanuelle Ruiz, Vladimir N Chouljenko, Konstantin G Kousoulas","doi":"10.1007/s11262-024-02054-x","DOIUrl":"10.1007/s11262-024-02054-x","url":null,"abstract":"<p><p>Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"148-158"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-01Epub Date: 2024-02-13DOI: 10.1007/s11262-024-02055-w
Mohammed El-Mowafy, Mohamed Elegezy, Mohamed El-Mesery, Abdelaziz Elgaml
{"title":"Characterization of a breakthrough vaccine escape strain associated with overt hepatitis B virus infection.","authors":"Mohammed El-Mowafy, Mohamed Elegezy, Mohamed El-Mesery, Abdelaziz Elgaml","doi":"10.1007/s11262-024-02055-w","DOIUrl":"10.1007/s11262-024-02055-w","url":null,"abstract":"<p><p>Hepatitis B virus (HBV) vaccine is composed of the purified hepatitis B surface antigen (HBsAg) that is produced by recombinant DNA technology. The neutralizing antibodies induced by vaccination target mainly the \"a\" determinant, aa124-147, of the outer viral envelope (HBsAg). In the present work, we demonstrate a case study for vaccinated patient that is infected with a vaccine escape HBV strain (Eg200). Characterization of the isolate Eg200 showed that it belongs to the genotype D and an uncommon sub-genotype in Egypt; D9. The DNA sequence encoding HBsAg was sequenced. Mutational analysis of the HBsAg showed a double mutation in the \"a\" determinant of this HBV isolate; T125M and P127T. However, such substitutions were found to be conserved to the detected serotype, ayw3, of Eg200 isolate. This case report indicates that continuous characterization of breakthrough vaccine escape strains of HBV is essential to develop the immunization strategies against HBV infection.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"235-239"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virus GenesPub Date : 2024-04-01Epub Date: 2024-02-14DOI: 10.1007/s11262-024-02061-y
Wolfram H Gerlich
{"title":"Do HBsAg subdeterminants matter for vaccination against hepatitis B?","authors":"Wolfram H Gerlich","doi":"10.1007/s11262-024-02061-y","DOIUrl":"10.1007/s11262-024-02061-y","url":null,"abstract":"","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"240-242"},"PeriodicalIF":1.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}