{"title":"Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells.","authors":"Lijun Song, Peicheng Zhong, Runyu Yu, Yue Yuan, Yujing Zhou, Yupei Qian, Siyan Yang, Haosen Yi, Zhiyan Yang, Wenchang Zhao","doi":"10.1007/s11262-024-02104-4","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"621-634"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11262-024-02104-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.