Advances in the study of LNPs for mRNA delivery and clinical applications.

IF 1.9 4区 医学 Q3 GENETICS & HEREDITY
Virus Genes Pub Date : 2024-12-01 Epub Date: 2024-08-22 DOI:10.1007/s11262-024-02102-6
Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen
{"title":"Advances in the study of LNPs for mRNA delivery and clinical applications.","authors":"Bili Wang, Biao Shen, Wenqing Xiang, Hongqiang Shen","doi":"10.1007/s11262-024-02102-6","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"577-591"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02102-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.

Abstract Image

用于 mRNA 运送和临床应用的 LNPs 研究进展。
信使核糖核酸(mRNA)于 1961 年被发现,是将遗传信息从 DNA 转移到核糖体以合成蛋白质的中间体。COVID-19 大流行使全世界都开始关注 mRNA 疫苗。BNT162b2 和 mRNA-1273 这两种 COVID-19 mRNA 疫苗的紧急使用授权是疫苗开发史上的重大成就。脂质纳米颗粒(LNPs)是目前最优秀的非病毒递送载体之一,作为 COVID-19 疫苗的一部分,它在临床转化方面取得了许多令人振奋的进展,因此有可能加速许多基因药物的临床转化。此外,由于 LNPs 体积小、生物相容性好、可生物降解,它能有效地将核酸输送到细胞中,这对目前的 mRNA 治疗方案尤为重要。LNPs 由阳离子或 pH 依赖性离子化脂质双分子层、聚乙二醇(PEG)、磷脂和胆固醇组成,是一种先进的 mRNA 疫苗递送系统。此外,对构成 LNPs 的这四种成分进行优化后,疫苗的疗效得到了提高,不良反应也减少了。生物可降解脂质的加入增强了 LNPs 的生物相容性,从而提高了其作为一种有效治疗方法的潜力,可用于治疗各种具有挑战性的复杂疾病,包括传染病、肝脏疾病、癌症、心血管疾病和脑血管疾病等。因此,本综述旨在为科学界提供有关 mRNA 疫苗和 LNP 递送系统的最新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virus Genes
Virus Genes 医学-病毒学
CiteScore
3.30
自引率
0.00%
发文量
76
审稿时长
3 months
期刊介绍: Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools. Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments. Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信