Mathematical Biosciences最新文献

筛选
英文 中文
A numerical evaluation of the economic tradeoff of vaccination against chikungunya virus in Brazil 巴西基孔肯雅病毒疫苗接种经济权衡的数值评估。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-02-01 DOI: 10.1016/j.mbs.2025.109376
Vinicius V.L. Albani , Eduardo Massad
{"title":"A numerical evaluation of the economic tradeoff of vaccination against chikungunya virus in Brazil","authors":"Vinicius V.L. Albani ,&nbsp;Eduardo Massad","doi":"10.1016/j.mbs.2025.109376","DOIUrl":"10.1016/j.mbs.2025.109376","url":null,"abstract":"<div><div>This article uses a compartmental model describing the dynamic of the chikungunya virus in populations of humans and mosquitoes with parameters fitted to the incidence in Brazil to estimate the economic trade-off of vaccination against the virus infection. The model uses time-dependent parameters to incorporate fluctuations in the transmission and the mosquito population across the years. Using the model predictions of symptomatic infections and literature data concerning the proportions of post-acute and chronic cases, the vaccination cost is compared with the disease cost. Numerical results considering different scenarios indicate that vaccination has a limited impact on reducing the disease cost assuming that vaccination is applied uniformly countrywide. We do not consider regional targets. In some scenarios, vaccinating about 10<span><math><mtext>%</mtext></math></span> of the population as early as possible can reduce the disease cost and is more economically efficient. Larger proportions make vaccination not viable.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"380 ","pages":"Article 109376"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nonautonomous model for the impact of toxicants on size-structured aquatic populations: Well-posedness and long-term dynamics
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-02-01 DOI: 10.1016/j.mbs.2025.109382
Xiumei Deng , Qihua Huang , Hao Wang
{"title":"A nonautonomous model for the impact of toxicants on size-structured aquatic populations: Well-posedness and long-term dynamics","authors":"Xiumei Deng ,&nbsp;Qihua Huang ,&nbsp;Hao Wang","doi":"10.1016/j.mbs.2025.109382","DOIUrl":"10.1016/j.mbs.2025.109382","url":null,"abstract":"<div><div>Mathematical models have played a crucial role in understanding and assessing the impacts of toxicants on populations. However, many existing population-toxicant interaction models are physically unstructured and represented by autonomous systems, assuming all individuals are identical and model parameters are constant over time. In this paper, we develop a nonautonomous model describing the interaction between a size-structured population and an unstructured toxicant in a polluted aquatic ecosystem. This model allows us to investigate the influence of size- and time-dependent individual vital rates (growth, reproduction, and mortality), time-varying toxicant input and degradation, and size-specific sensitivity of individuals to toxicants on population persistence. We establish the existence and uniqueness of solutions for this model using the monotone method, based on a comparison principle. We then analyze how time- and size-dependent parameters affect the long-term population dynamics. Specifically, we derive conditions on these parameters that lead to either extinction or persistence of the population. We provide a comparative analysis of numerical solutions between our size-structured model and an unstructured model with size-averaged parameters, emphasizing the significance of incorporating size structure when evaluating the effects of toxicants on populations.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109382"},"PeriodicalIF":1.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple model for the analysis of epidemics based on hospitalization data
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-01-26 DOI: 10.1016/j.mbs.2025.109380
Katelyn Plaisier Leisman , Shinhae Park , Sarah Simpson , Zoi Rapti
{"title":"A simple model for the analysis of epidemics based on hospitalization data","authors":"Katelyn Plaisier Leisman ,&nbsp;Shinhae Park ,&nbsp;Sarah Simpson ,&nbsp;Zoi Rapti","doi":"10.1016/j.mbs.2025.109380","DOIUrl":"10.1016/j.mbs.2025.109380","url":null,"abstract":"<div><div>An epidemiological model with a minimal number of parameters is introduced and its structural and practical identifiabity is investigated both analytically and numerically. The model is useful when a high percentage of unreported cases is suspected, hence only hospitalization data are used to fit the model parameters and calculate the basic reproductive number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the effective reproductive number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>. As a case study, the model is used to study the initial surge and the Omicron wave of the COVID-19 epidemic in Belgium. It was found that the reported cases largely underestimate the actual cases, and the estimated values of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are consistent with other studies. The exact number of people initially in each epidemiological class is also considered unknown and was estimated directly and not considered as additional parameters to be fitted. Furthermore, the parameter fitting was performed with two different available data sets, in order to improve confidence. The methodology presented here can be easily modified to study outbreaks of diseases for which little information on confirmed cases is known a priori or when the available information is largely unreliable.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109380"},"PeriodicalIF":1.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibrotic extracellular matrix preferentially induces a partial Epithelial–Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis 在基于3-D药物的纤维化模型中,纤维化细胞外基质优先诱导部分上皮-间质转化表型。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-01-18 DOI: 10.1016/j.mbs.2025.109375
Kristin P. Kim, Christopher A. Lemmon
{"title":"Fibrotic extracellular matrix preferentially induces a partial Epithelial–Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis","authors":"Kristin P. Kim,&nbsp;Christopher A. Lemmon","doi":"10.1016/j.mbs.2025.109375","DOIUrl":"10.1016/j.mbs.2025.109375","url":null,"abstract":"<div><div>One of the main drivers of fibrotic diseases is epithelial–mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-<span><math><mi>β</mi></math></span>1 (TGF-<span><math><mi>β</mi></math></span>1) has been previously shown to regulate EMT. TGF-<span><math><mi>β</mi></math></span>1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-<span><math><mi>β</mi></math></span>1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-<span><math><mi>β</mi></math></span>1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-<span><math><mi>β</mi></math></span>1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-<span><math><mi>β</mi></math></span>1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-<span><math><mi>β</mi></math></span>1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-<span><math><mi>β</mi></math></span>1-FN fibril tethering by locally reducing the TGF-<span><math><mi>β</mi></math></span>1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-<span><math><mi>β</mi></math></span>1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-<span><math><mi>β</mi></math></span>1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-<span><math><mi>β</mi></math></span>1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109375"},"PeriodicalIF":1.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical causes and implications of repetitive DNA motifs 重复 DNA 主题的机械原因和影响。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-01-01 DOI: 10.1016/j.mbs.2024.109343
Paul Torrillo , David Swigon
{"title":"Mechanical causes and implications of repetitive DNA motifs","authors":"Paul Torrillo ,&nbsp;David Swigon","doi":"10.1016/j.mbs.2024.109343","DOIUrl":"10.1016/j.mbs.2024.109343","url":null,"abstract":"<div><div>Experimental research suggests that local patterns in DNA sequences can result in stiffer or more curved structures, potentially impacting chromatin formation, transcription regulation, and other processes. However, the effect of sequence variation on DNA geometry and mechanics remains relatively underexplored. Using rigid base pair models to aid rapid computation, we investigated the sample space of 100 bp DNA sequences to identify mechanical extrema based on metrics such as static persistence length, global bend, or angular deviation. Our results show that repetitive DNA motifs are overrepresented in these extrema. We identified specific extremal motifs and demonstrated that their geometric and mechanical properties significantly differ from standard DNA through hierarchical clustering. We provide a mathematical argument supporting the presence of DNA repeats in extremizing sequences. Finally, we find that repetitive DNA motifs with extreme mechanical properties are prevalent in genetic databases and hypothesize that their unique mechanical properties could contribute to this abundance.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"379 ","pages":"Article 109343"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new method for the estimation of stochastic epidemic descriptors reinforced by Kalman-based dynamic parameter estimation. Application to mpox data 通过基于卡尔曼的动态参数估计加强随机流行病描述符估计的新方法。应用于 mpox 数据。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-12-11 DOI: 10.1016/j.mbs.2024.109365
Vasileios E. Papageorgiou , Georgios Vasiliadis , George Tsaklidis
{"title":"A new method for the estimation of stochastic epidemic descriptors reinforced by Kalman-based dynamic parameter estimation. Application to mpox data","authors":"Vasileios E. Papageorgiou ,&nbsp;Georgios Vasiliadis ,&nbsp;George Tsaklidis","doi":"10.1016/j.mbs.2024.109365","DOIUrl":"10.1016/j.mbs.2024.109365","url":null,"abstract":"<div><div>In the realm of epidemiology, it is essential to accurately assess epidemic phenomena through the adoption of innovative techniques that yield reliable predictions. This article introduces an advanced method that merges the Extended Kalman Filter approach with recursive algorithms to compute critical stochastic attributes important for evaluating epidemics. A new three-dimensional discrete Markov chain is presented, according to which the total number of infections, deaths, and the duration of epidemic outbreaks are estimated. This approach represents a notable improvement over the standard estimation procedure, which relies on Markov-based stochastic models with fixed parameters. Furthermore, it constitutes a real-time estimation process, as opposed to the standard method, which is more suitable for offline applications. The proposed methodology marks an original attempt to integrate computational techniques for modeling stochastic epidemic characteristics with dynamic parameter estimation procedures. An additional advantage is the reduction of noise in the system's states enhancing the overall precision. The method's performance is thoroughly assessed through 3 simulated epidemic instances. Furthermore, its application to the actual 2022 monkeypox (mpox) data from the Czech Republic demonstrates promising effectiveness. In comparison to the standard methodology, our approach yields estimates with deviations of only 4.383 weeks, 3.542 infections, and 0.266 deaths, as opposed to the standard method where we observe deviations of 15.372 weeks, 5.786 infections, and 0.501 deaths. Overall, the proposed estimation procedure proves to be a valuable tool for investigating epidemic phenomena characterized by fluctuating dynamics, potentially providing valuable insights for addressing the associated public health challenges.</div></div><div><h3>MSC</h3><div>62M20, 60J22, 65C40, 62G30, 62P10</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109365"},"PeriodicalIF":1.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spatiotemporal model for the effects of toxicants on the competitive dynamics of aquatic species 毒物对水生物种竞争动态影响的时空模型。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-11-23 DOI: 10.1016/j.mbs.2024.109341
Xiumei Deng , Qihua Huang , Zhi-An Wang
{"title":"A spatiotemporal model for the effects of toxicants on the competitive dynamics of aquatic species","authors":"Xiumei Deng ,&nbsp;Qihua Huang ,&nbsp;Zhi-An Wang","doi":"10.1016/j.mbs.2024.109341","DOIUrl":"10.1016/j.mbs.2024.109341","url":null,"abstract":"<div><div>In this paper, we develop a reaction–diffusion model with negative toxicant–taxis that incorporates spatiotemporally inhomogeneous toxicant input to investigate the impact of toxicants on the competitive dynamics of two species in a polluted aquatic environment. Here the negative toxicant–taxis models the evasive movement of avoiding toxicants by species. We establish the global well-posedness of the model, analyze the existence and stability of spatially homogeneous steady states, and derive sufficient conditions for species extinction and coexistence. Through linear stability analysis, we identify sufficient conditions on model parameters that destabilize spatially homogeneous steady states under spatiotemporally uniform toxicant input. Numerical experiments reveal the influence of key toxicant-related factors (input rate, taxis intensity, and diffusivity) on competition outcomes and species distributions. Notably, strong negative toxicant–taxis can induce spatial aggregation and segregation patterns between the species and the toxicant under uniform toxicant input. Our findings suggest that toxicant–taxis may promote population persistence and coexistence, particularly when the toxicant input is not uniform in space and time and the toxicant does not diffuse fast (i.e. weak diffusivity). However, strong toxicant diffusion can diminish the impact of taxis, adversely affecting population persistence and species coexistence.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"379 ","pages":"Article 109341"},"PeriodicalIF":1.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal model of combining chemotherapy with senolytic treatment in lung cancer 肺癌化疗与衰老治疗相结合的时空模型
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-11-23 DOI: 10.1016/j.mbs.2024.109342
Teddy Lazebnik , Avner Friedman
{"title":"Spatio-temporal model of combining chemotherapy with senolytic treatment in lung cancer","authors":"Teddy Lazebnik ,&nbsp;Avner Friedman","doi":"10.1016/j.mbs.2024.109342","DOIUrl":"10.1016/j.mbs.2024.109342","url":null,"abstract":"<div><div>Senescent cells are cells that stop dividing but sustain viability. Cellular senescence is the hallmark of aging, but senescence also appears in cancer, triggered by cells stress, tumor suppression of gene activation, and oncogene activity. In lung cancer, senescent cancer cells secrete VEGF, which initiates a process of angiogenesis, enabling the cancer to grow and proliferate. Chemotherapy kills cancer cells, but some cancer cells become senescent. Hence, a senolytic drug, a drug that eliminates senescent cells, should significantly improve the efficacy of chemotherapy. In this paper, we developed a mathematical spatio-temporal model of combination chemotherapy with senolytic drug in treatment of lung cancer. Model’s simulations of tumor volume growth are shown to agree with mouse experiments in the case where cyclophosphamide is combined with the senolytic drug fisetin. It is then shown how the model can be used to assess the benefits of treatments with different combinations and different schedules of the two drugs in order to achieve optimal tumor volume reduction.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"379 ","pages":"Article 109342"},"PeriodicalIF":1.9,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theory for viral rebound after antiviral treatment: A study case for SARS-CoV-2 抗病毒治疗后病毒反弹的理论:SARS-CoV-2 研究案例。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-11-20 DOI: 10.1016/j.mbs.2024.109339
Mara Perez , Marcelo Actis , Ignacio Sanchez , Esteban A. Hernandez-Vargas , Alejandro H. González
{"title":"A theory for viral rebound after antiviral treatment: A study case for SARS-CoV-2","authors":"Mara Perez ,&nbsp;Marcelo Actis ,&nbsp;Ignacio Sanchez ,&nbsp;Esteban A. Hernandez-Vargas ,&nbsp;Alejandro H. González","doi":"10.1016/j.mbs.2024.109339","DOIUrl":"10.1016/j.mbs.2024.109339","url":null,"abstract":"<div><div>A fraction of individuals infected with SARS-CoV-2 experienced rebounds when treated with effective antivirals such as Nirmatrelvir/Ritonavir (Paxlovid). Although this phenomenon has been studied from biological and statistical perspectives, the underlying dynamical mechanism is not yet fully understood. In this work, we characterize the dynamic behavior of a target-cell model to explain post-treatment rebounds from the perspective of set-theoretic stability analysis. Without relying on the effects of the adaptive immune system or the resistance through viral mutations, we develop mathematical conditions for antiviral treatments to avoid viral rebound. Simulation results illustrate the critical role of dosage (i.e., the doses and timing of administration) in taking advantage of highly effective drugs and tailoring therapies.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"379 ","pages":"Article 109339"},"PeriodicalIF":1.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green behavior propagation analysis based on statistical theory and intelligent algorithm in data-driven environment 基于统计理论和智能算法的数据驱动环境下的绿色行为传播分析。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2024-11-19 DOI: 10.1016/j.mbs.2024.109340
Linhe Zhu , Yi Ding , Shuling Shen
{"title":"Green behavior propagation analysis based on statistical theory and intelligent algorithm in data-driven environment","authors":"Linhe Zhu ,&nbsp;Yi Ding ,&nbsp;Shuling Shen","doi":"10.1016/j.mbs.2024.109340","DOIUrl":"10.1016/j.mbs.2024.109340","url":null,"abstract":"<div><div>The correlation between green behavior and energy efficiency is growing due to the heightened focus on energy efficiency among individuals. This paper introduces a three-layer network model to analyze the relationships among information diffusion, awareness and green behavior spreading. We have analyzed the probability tree of state transfer across 12 states by using Microscopic Markov Chain Approach (MMCA) and derived the state transfer equations for each state to compute the state transition threshold. In addition, we use the reaction–diffusion system to model the interaction between space and time changes for each state in the green behavior propagation layer. The equilibrium point of the system is defined, and the criteria for Turing bifurcation are identified. The optimal control approach achieves parameter identification, and this study validates the theory through several numerical simulations. Meanwhile, the effectiveness of parameter identification based on the convolutional neural network (CNN) and optimal control is compared. The data on China’s electrical energy generation is predicted and compared by using three neural networks and an autoregressive integrated moving average (ARIMA) model. Further, considering clean energy generation as a green behavior, we fit the data on the percentage of clean energy generation by applying a Microscopic Markov Chain model and a reaction–diffusion system.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"379 ","pages":"Article 109340"},"PeriodicalIF":1.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信