Distributions of prevalence and daily new cases in a stochastic linear SEIR model

IF 1.8 4区 数学 Q2 BIOLOGY
Manting Wang, P. van den Driessche, Laura L.E. Cowen, Junling Ma
{"title":"Distributions of prevalence and daily new cases in a stochastic linear SEIR model","authors":"Manting Wang,&nbsp;P. van den Driessche,&nbsp;Laura L.E. Cowen,&nbsp;Junling Ma","doi":"10.1016/j.mbs.2025.109508","DOIUrl":null,"url":null,"abstract":"<div><div>Model parameters are typically estimated by calibrating the model to new case counts. This is important for understanding disease dynamics and guiding control measures. For parameter estimation, it is essential to identify the distribution of new cases and establish an appropriate likelihood function. This study employs a stochastic linear SEIR model to approximate the distributions of the number of infectious individuals and the number of daily new cases. We show that the probability-generating function (PGF) of the number of infectious individuals can be approximated as the product of PGFs of two birth-and-death processes. We theoretically derive formulas for the mean and variance of both the number of infectious individuals and daily new cases. Furthermore, we demonstrate that the distribution of the infectious population size can be approximated by a binomial or negative binomial distribution, depending on the relationship between its mean and variance. The distribution of daily new cases can also be well approximated by a binomial or negative binomial distribution, depending on the distribution of the infectious population. Specifically, if the number of infectious individuals follows a binomial distribution, the number of daily new cases is also binomial; if it follows a negative binomial distribution, the number of daily new cases is negative binomial as well. These findings provide a robust theoretical basis for parameter estimation and epidemic forecasting.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"388 ","pages":"Article 109508"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001348","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Model parameters are typically estimated by calibrating the model to new case counts. This is important for understanding disease dynamics and guiding control measures. For parameter estimation, it is essential to identify the distribution of new cases and establish an appropriate likelihood function. This study employs a stochastic linear SEIR model to approximate the distributions of the number of infectious individuals and the number of daily new cases. We show that the probability-generating function (PGF) of the number of infectious individuals can be approximated as the product of PGFs of two birth-and-death processes. We theoretically derive formulas for the mean and variance of both the number of infectious individuals and daily new cases. Furthermore, we demonstrate that the distribution of the infectious population size can be approximated by a binomial or negative binomial distribution, depending on the relationship between its mean and variance. The distribution of daily new cases can also be well approximated by a binomial or negative binomial distribution, depending on the distribution of the infectious population. Specifically, if the number of infectious individuals follows a binomial distribution, the number of daily new cases is also binomial; if it follows a negative binomial distribution, the number of daily new cases is negative binomial as well. These findings provide a robust theoretical basis for parameter estimation and epidemic forecasting.
随机线性SEIR模型中流行率和每日新病例的分布
模型参数通常是通过将模型校准到新的病例数来估计的。这对于了解疾病动态和指导控制措施非常重要。对于参数估计,必须确定新病例的分布并建立适当的似然函数。本研究采用随机线性SEIR模型来近似计算感染个体数和每日新病例数的分布。我们证明了感染个体数量的概率生成函数(PGF)可以近似为两个出生和死亡过程的概率生成函数的乘积。我们从理论上推导出感染个体数和每日新病例数的均值和方差的公式。此外,我们证明了传染性种群大小的分布可以近似为二项分布或负二项分布,这取决于其均值和方差之间的关系。根据感染人群的分布,每日新病例的分布也可以很好地近似为二项分布或负二项分布。具体来说,如果感染个体的数量服从二项分布,则每日新增病例数也是二项分布;如果它遵循负二项分布,则每日新增病例数也是负二项分布。这些发现为参数估计和疫情预测提供了有力的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信