Mathematical Biosciences最新文献

筛选
英文 中文
Testing-isolation interventions will likely be insufficient to contain future novel disease outbreaks 检测隔离干预措施很可能不足以遏制未来新型疾病的爆发。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-28 DOI: 10.1016/j.mbs.2025.109432
Jeffery Demers , William F. Fagan , Sriya Potluri , Justin M. Calabrese
{"title":"Testing-isolation interventions will likely be insufficient to contain future novel disease outbreaks","authors":"Jeffery Demers ,&nbsp;William F. Fagan ,&nbsp;Sriya Potluri ,&nbsp;Justin M. Calabrese","doi":"10.1016/j.mbs.2025.109432","DOIUrl":"10.1016/j.mbs.2025.109432","url":null,"abstract":"<div><div>Rapid identification and isolation of infected individuals with diagnostic testing plays a critical role in combating invasions of novel human pathogens. Unfortunately, unprepared health agencies may struggle to meet the massive testing capacity demands imposed by an outbreaking novel pathogen, potentially resulting in a failure of epidemic containment as occurred with COVID-19. Despite the critical importance of understanding the likelihood of such an outcome, it remains unclear how the particular characteristics of a novel disease will impact the magnitude of resource constraints on controllability. Specifically, is the failure of testing-isolation unique to COVID-19, or is this a likely outcome across the spectrum of disease traits that may constitute future epidemics? Here, using a generalized mathematical model parameterized for seven different human diseases and variants, we show that testing-isolation strategies will typically fail to contain epidemic outbreaks at practicably achievable testing capacities. From this analysis, we identify three key disease characteristics that govern controllability under resource constraints; the basic reproduction number, mean latent period, and non-symptomatic transmission index. Interactions among these characteristics play prominent roles in both explaining controllability differences among diseases and enhancing the efficacy of testing-isolation in combination with transmission-reduction measures. This study provides broad guidelines for managing controllability expectations during future novel disease invasions, describing which classes of diseases are most amenable to testing-isolation strategies alone and which will necessitate additional transmission-reduction measures like social distancing.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"384 ","pages":"Article 109432"},"PeriodicalIF":1.9,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing symmetry transitions in systems with dynamic morphology
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-28 DOI: 10.1016/j.mbs.2025.109431
Maria-Veronica Ciocanel , Punit Gandhi , Karl Niklas , Adriana T. Dawes
{"title":"Characterizing symmetry transitions in systems with dynamic morphology","authors":"Maria-Veronica Ciocanel ,&nbsp;Punit Gandhi ,&nbsp;Karl Niklas ,&nbsp;Adriana T. Dawes","doi":"10.1016/j.mbs.2025.109431","DOIUrl":"10.1016/j.mbs.2025.109431","url":null,"abstract":"<div><div>The accurate quantification of symmetry is a key goal in biological inquiries because symmetry can affect biological performance and can reveal insights into development and evolutionary history. Recently, we proposed a versatile measure of symmetry, transformation information (<span><math><mi>TI</mi></math></span>), which provides an entropy-based measure of deviations from exact symmetry with respect to a parameterized family of transformations. Here we develop this measure further to quantify approximate symmetries and maximal symmetries represented by critical points in <span><math><mi>TI</mi></math></span> as a function of a transformation parameter. This framework allows us to characterize the evolution of symmetry by tracking qualitative changes with respect to these critical points. We apply <span><math><mi>TI</mi></math></span> to increasingly complex settings, from mathematically tractable probability distributions to differential equation models with emergent behaviors that are inspired by developmental biology and formulated in both static and growing domains. Our analysis of the qualitative changes in symmetry properties indicates a potential pathway toward a general mathematical framework for characterizing symmetry transitions akin to bifurcation theory for dynamical systems. The results reveal deep connections between observed symmetry transitions, subtle changes in morphology, and the underlying mechanisms that govern the dynamics of the system.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"384 ","pages":"Article 109431"},"PeriodicalIF":1.9,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing time activity curves from spatio-temporal tracer data to determine tracer transport velocity in plants 分析时空示踪剂数据的时间活动曲线,确定植物体内的示踪剂迁移速度。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-19 DOI: 10.1016/j.mbs.2025.109430
Hannah Lanzrath , Eric von Lieres , Ralf Metzner , Gregor Huber
{"title":"Analyzing time activity curves from spatio-temporal tracer data to determine tracer transport velocity in plants","authors":"Hannah Lanzrath ,&nbsp;Eric von Lieres ,&nbsp;Ralf Metzner ,&nbsp;Gregor Huber","doi":"10.1016/j.mbs.2025.109430","DOIUrl":"10.1016/j.mbs.2025.109430","url":null,"abstract":"<div><div>Non-invasive methods utilizing tracers have a great potential to investigate carbon allocation in plants. Specifically, radioactive tracers, such as <span><math><mrow><msup><mrow></mrow><mrow><mn>11</mn></mrow></msup><mtext>C</mtext></mrow></math></span>, enable the monitoring of spatially localized transport processes on short time scales in living plants. Typically, such tracer transport experiments yield time activity curves (TACs) of tracer activity over time at various locations along a transport pathway. These TACs can exhibit different characteristic shapes that strongly depend on tracer transport dynamics, reflecting properties such as transport velocity, exchange with surrounding tissue, and tracer storage along the pathway. Various methods, either data-driven or model-based, exist to determine transport velocities from TACs. However, for some TAC shapes, the inferred carbon tracer velocity values can be inconsistent and greatly vary between analysis methods. In the present study, we review and evaluate different analysis methods for their suitability to reliably determine tracer transport velocities from typical TAC shapes. For this evaluation, we use both <em>in silico</em> generated and experimentally acquired TACs from positron emission tomography measurements on tomato, barley, and bean. We demonstrate that each of the compared methods can be suitable for specific TAC shapes while being less or not appropriate for others. In conclusion, we present a case-specific evaluation of methods as a reference for analyzing TACs from tracer transport experiments, which allows to ensure a robust and globally comparable determination of transport velocities.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109430"},"PeriodicalIF":1.9,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143674702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random evolutionary dynamics in predator–prey systems yields large, clustered ecosystems
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-18 DOI: 10.1016/j.mbs.2025.109417
Christian H.S. Hamster , Jorik Schaap , Peter van Heijster , Joshua A. Dijksman
{"title":"Random evolutionary dynamics in predator–prey systems yields large, clustered ecosystems","authors":"Christian H.S. Hamster ,&nbsp;Jorik Schaap ,&nbsp;Peter van Heijster ,&nbsp;Joshua A. Dijksman","doi":"10.1016/j.mbs.2025.109417","DOIUrl":"10.1016/j.mbs.2025.109417","url":null,"abstract":"<div><div>We study the effect of introducing new species through evolution into communities. We use the setting of predator–prey systems. Predator–prey dynamics is classically well modeled by Lotka–Volterra (LV) equations, also when multiple predator and prey species co-exist. We use a stochastic method to introduce new species in a two-trophic LV system. We find that introducing random evolving species leads to robust ecosystems in which large numbers of species coexist. Crucially, in these large ecosystems an emergent clustering of species is observed, tying functional differences to phylogenetic history.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109417"},"PeriodicalIF":1.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epidemic spreading on biological evolution networks
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-18 DOI: 10.1016/j.mbs.2025.109416
Zhong-Pan Cao, Jin-Xuan Yang, Ying Tan
{"title":"Epidemic spreading on biological evolution networks","authors":"Zhong-Pan Cao,&nbsp;Jin-Xuan Yang,&nbsp;Ying Tan","doi":"10.1016/j.mbs.2025.109416","DOIUrl":"10.1016/j.mbs.2025.109416","url":null,"abstract":"<div><div>The spread of epidemics is closely related to network structure. In reality, network structure will change over time with the departure or employment of many individuals. Mathematical models can not only be used to simulate the evolution of networks, but also to better analyze the changes in the spread of epidemics. In the present work, we propose two mathematical models of evolution networks with the addition and deletion of nodes to analyze epidemic spread on homogeneous and heterogeneous networks. We discuss various factors affecting the spread of epidemics when the evolution network reaches a steady state, including the number of new nodes and their initial degree, the deletion rate of nodes, and so on. The results show that in homogeneous networks, the epidemic threshold first increases and then decreases, while in heterogeneous networks, the epidemic threshold increases or decreases under certain conditions. It provides many measures to improve the epidemic threshold and slow down the spread of epidemics.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109416"},"PeriodicalIF":1.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of tritiated water on competitive outcomes of two Daphnia species in lakes: A reaction–diffusion tritium-taxis model
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-08 DOI: 10.1016/j.mbs.2025.109420
Xiaoshuang Li , Hua Nie , Xiao Yan
{"title":"The effects of tritiated water on competitive outcomes of two Daphnia species in lakes: A reaction–diffusion tritium-taxis model","authors":"Xiaoshuang Li ,&nbsp;Hua Nie ,&nbsp;Xiao Yan","doi":"10.1016/j.mbs.2025.109420","DOIUrl":"10.1016/j.mbs.2025.109420","url":null,"abstract":"<div><div>The discharge of nuclear-contaminated water, particularly tritiated water (HTO), poses a significant global environmental challenge due to its potential negative impacts on ecosystems. To examine how such discharges influence the competitive dynamics between two Daphnia species in lake environments, we develop a spatiotemporal competition model that incorporates a tritium-taxis term. Our findings indicate that a moderate HTO input rate, combined with varying radiosensitivity between the species, can reverse the competitive outcomes between the two species. Specifically, species with lower radiosensitivity to HTO may compensate for competitive disadvantages, potentially enhancing biodiversity, or conversely, gain a competitive edge, which could reduce biodiversity. Moreover, a low HTO removal rate can lead to bistability or tristability in the system, while strong tritium-taxis promotes the development of spatially heterogeneous patterns. This study underscores the importance of considering the indirect effects of moderate HTO input and species-specific radiosensitivity, which can result in counterintuitive ecological dynamics.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109420"},"PeriodicalIF":1.9,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143598670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of non-exponential reversal times in aggregation models of bacterial populations
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-08 DOI: 10.1016/j.mbs.2025.109418
Michael Batista , Patrick Murphy , Oleg A. Igoshin , Misha Perepelitsa , Ilya Timofeyev
{"title":"Role of non-exponential reversal times in aggregation models of bacterial populations","authors":"Michael Batista ,&nbsp;Patrick Murphy ,&nbsp;Oleg A. Igoshin ,&nbsp;Misha Perepelitsa ,&nbsp;Ilya Timofeyev","doi":"10.1016/j.mbs.2025.109418","DOIUrl":"10.1016/j.mbs.2025.109418","url":null,"abstract":"<div><div>Individual bacteria typically follow somewhat simple rules of motion, but collective behavior can exhibit complex behavioral patterns. For instance, the formation and dispersal of aggregates of reversing bacteria in biofilms are primarily driven by coordinated motion among cells. Many mathematical models of aggregation assume that cells have no memory, e.g., the time between their behavior changes, such as direction reversals, is exponentially distributed. However, in practice, the distribution is quite distinct from exponential. Therefore, in this paper, we analyze numerically the importance of non-exponential reversal times in 1D agent-based and kinetic models of aggregation. In particular, we consider these models in a practical parameter regime by fitting a Gamma distribution to represent the run times of myxobacteria and study their collective behavior with exponential and non-exponential reversal times. We demonstrate that non-exponential reversal times aid aggregation and result in tighter aggregates. We compare and contrast the behavior of agent-based and kinetic models that consider aggregation driven by chemotaxis. Thus, incorporating non-exponential reversal times into models of aggregation can be particularly important for reproducing experimental data, such as aggregate persistence and dispersal. These results provide a simple example of how the existence of memory helps bacteria coordinate their behaviors.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109418"},"PeriodicalIF":1.9,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic models are hypotheses: A perspective
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-03-01 DOI: 10.1016/j.mbs.2025.109419
John W Glasser , Zhilan Feng
{"title":"Mechanistic models are hypotheses: A perspective","authors":"John W Glasser ,&nbsp;Zhilan Feng","doi":"10.1016/j.mbs.2025.109419","DOIUrl":"10.1016/j.mbs.2025.109419","url":null,"abstract":"<div><div>Science involves perceiving patterns (events that are repeated) in observations, hypothesizing causal explanations (underlying processes), and testing them. Mathematical models either describe or provide explanations for patterns. The equations of descriptive models have convenient mathematical properties while those of mechanistic ones correspond to processes. The parameters of descriptive models are fit to observations by choosing values that minimize discrepant predictions. Because mechanistic models are hypotheses about the processes underlying patterns, their parameters should not be fit, but rather, should be based insofar as possible on first principles or estimated independently. The precision of mathematics facilitates comparing the predictions of mechanistic models to the patterns that they purport to explain and, until concordant, identifying and remedying the cause(s) of disparities.</div><div>The findings and conclusions in this report are those of the authors and do not necessarily represent official positions of the Centers for Disease Control and Prevention or National Science Foundation.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109419"},"PeriodicalIF":1.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mathematical modeling study of the effectiveness of contact tracing in reducing the spread of infectious diseases with incubation period 关于接触追踪在减少有潜伏期的传染病传播方面的有效性的数学模型研究。
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-02-26 DOI: 10.1016/j.mbs.2025.109415
Mohamed Ladib , Cameron J. Browne , Hayriye Gulbudak , Aziz Ouhinou
{"title":"A mathematical modeling study of the effectiveness of contact tracing in reducing the spread of infectious diseases with incubation period","authors":"Mohamed Ladib ,&nbsp;Cameron J. Browne ,&nbsp;Hayriye Gulbudak ,&nbsp;Aziz Ouhinou","doi":"10.1016/j.mbs.2025.109415","DOIUrl":"10.1016/j.mbs.2025.109415","url":null,"abstract":"<div><div>In this work, we study an epidemic model with demography that incorporates some key aspects of the contact tracing intervention. We derive generic formulae for the effective reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> when contact tracing is employed to mitigate the spread of infection. The derived expressions are reformulated in terms of the initial reproduction number <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> (in the absence of tracing), the number of traced cases caused by a primary untraced reported index case, and the average number of secondary cases infected by traced infectees during their infectious period. In parallel, under some restrictions, the local stability of the disease-free equilibrium is investigated. The model was fitted to data of Ebola disease collected during the 2014–2016 outbreaks in West Africa. Finally, numerical simulations are provided to investigate the effect of key parameters on <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>. By considering ongoing interventions, the simulations indicate whether contact tracing can suppress <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span> below unity, as well as identify parameter regions where it can effectively contain epidemic outbreaks when applied with a given level of efficiency.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"383 ","pages":"Article 109415"},"PeriodicalIF":1.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework for the modelling and the analysis of epidemiological spread in commuting populations
IF 1.9 4区 数学
Mathematical Biosciences Pub Date : 2025-02-25 DOI: 10.1016/j.mbs.2025.109403
Pierre-Alexandre Bliman , Boureima Sangaré , Assane Savadogo
{"title":"A framework for the modelling and the analysis of epidemiological spread in commuting populations","authors":"Pierre-Alexandre Bliman ,&nbsp;Boureima Sangaré ,&nbsp;Assane Savadogo","doi":"10.1016/j.mbs.2025.109403","DOIUrl":"10.1016/j.mbs.2025.109403","url":null,"abstract":"<div><div>In the present paper, our goal is to establish a framework for the mathematical modelling and the analysis of the spread of an epidemic in a large population commuting regularly, typically along a time-periodic pattern, as is roughly speaking the case in populous urban centre. Our modelling contribution develops along two axes. To model the commuting, we consider a large number of distinct <em>homogeneous</em> groups of individuals of various sizes, called <em>subpopulations</em>, and focus on the modelling of the changing conditions of their mixing along time and of the induced disease transmission. Also, for the purposes of the study, we propose a general class of epidemiological models in which the ‘force of infection’ plays a central role, which extends and unifies several classes previously developed. We take special care in explaining the modelling approach in details, and provide first analytic results that allow to compute or estimate the value of the basic reproduction number for such general periodic epidemic systems.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"382 ","pages":"Article 109403"},"PeriodicalIF":1.9,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信