Spatial pattern regulation strategy of bimolecular model with anomalous diffusion and nonlocal effects

IF 1.8 4区 数学 Q2 BIOLOGY
Yifeng Luan , Min Xiao , Jinling Liang , Zhen Wang , Yi Yao , Jinde Cao , Sergy Gorbachev
{"title":"Spatial pattern regulation strategy of bimolecular model with anomalous diffusion and nonlocal effects","authors":"Yifeng Luan ,&nbsp;Min Xiao ,&nbsp;Jinling Liang ,&nbsp;Zhen Wang ,&nbsp;Yi Yao ,&nbsp;Jinde Cao ,&nbsp;Sergy Gorbachev","doi":"10.1016/j.mbs.2025.109482","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms underlying the formation of spatial patterns in chemical reaction processes have been well established. However, there is still a lack of effective control methods for regulating the formation of spatial patterns and facilitating the transitions between different patterns. This article proposes a novel bimolecular model, incorporating nonlocal effects in reactions and molecular-level anomalous diffusion, within the two-dimensional reaction domain based on the previous framework. Linear stability analysis provides the necessary and sufficient conditions for inducing Turing instability. By utilizing the multiscale analysis, the amplitude equations pertinent to the new model are derived. After identifying the parameter ranges conducive to the formation of fundamental patterns, we introduce the proportional-derivative (PD) control strategy to manage spatial pattern formation and transitions. Simulation results validate the theoretical analysis and demonstrate the efficacy of the PD control strategy.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109482"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001087","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanisms underlying the formation of spatial patterns in chemical reaction processes have been well established. However, there is still a lack of effective control methods for regulating the formation of spatial patterns and facilitating the transitions between different patterns. This article proposes a novel bimolecular model, incorporating nonlocal effects in reactions and molecular-level anomalous diffusion, within the two-dimensional reaction domain based on the previous framework. Linear stability analysis provides the necessary and sufficient conditions for inducing Turing instability. By utilizing the multiscale analysis, the amplitude equations pertinent to the new model are derived. After identifying the parameter ranges conducive to the formation of fundamental patterns, we introduce the proportional-derivative (PD) control strategy to manage spatial pattern formation and transitions. Simulation results validate the theoretical analysis and demonstrate the efficacy of the PD control strategy.
具有异常扩散和非局部效应的双分子模型的空间格局调控策略
化学反应过程中空间模式形成的机制已经很好地确立了。然而,目前还缺乏有效的控制方法来调节空间格局的形成,促进不同格局之间的转换。本文在此基础上提出了一种新的双分子模型,该模型在二维反应域内结合了反应中的非局部效应和分子水平的异常扩散。线性稳定性分析为图灵不稳定性的产生提供了充分必要条件。利用多尺度分析,导出了与新模型相关的振幅方程。在确定了有利于基本模式形成的参数范围后,我们引入了比例导数(PD)控制策略来管理空间模式的形成和转变。仿真结果验证了理论分析,验证了PD控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信