具有非线性边界相互作用的贻贝-藻类系统的流动驱动动力学

IF 1.8 4区 数学 Q2 BIOLOGY
Chaochao Li , Hao Wang , Shangjiang Guo
{"title":"具有非线性边界相互作用的贻贝-藻类系统的流动驱动动力学","authors":"Chaochao Li ,&nbsp;Hao Wang ,&nbsp;Shangjiang Guo","doi":"10.1016/j.mbs.2025.109507","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate a reaction–diffusion–advection mussel-algae model with nonlinear boundary conditions, motivated by population dynamics in flowing aquatic environments. The system exhibits complex threshold behavior governed by energy conversion efficiency, flow velocity, and boundary-mediated losses. We establish conditions for global existence, boundedness, and characterize semi-trivial and coexistence steady states. By employing techniques compatible with the maximum principle under the structural assumption (H1) on the nonlinear boundary flux, along with super- and sub-solution methods, we rigorously analyze the persistence and extinction regimes. Our analysis reveal critical thresholds and bifurcations that determine species survival, with advection and nonlinear boundaries interacting to shape system dynamics. These findings generalize classical constant-flux models and offer a new framework for studying stability and bifurcation phenomena in reaction–advection–diffusion systems with biologically motivated boundary interactions.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109507"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow-driven dynamics in a mussel-algae system with nonlinear boundary interactions\",\"authors\":\"Chaochao Li ,&nbsp;Hao Wang ,&nbsp;Shangjiang Guo\",\"doi\":\"10.1016/j.mbs.2025.109507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate a reaction–diffusion–advection mussel-algae model with nonlinear boundary conditions, motivated by population dynamics in flowing aquatic environments. The system exhibits complex threshold behavior governed by energy conversion efficiency, flow velocity, and boundary-mediated losses. We establish conditions for global existence, boundedness, and characterize semi-trivial and coexistence steady states. By employing techniques compatible with the maximum principle under the structural assumption (H1) on the nonlinear boundary flux, along with super- and sub-solution methods, we rigorously analyze the persistence and extinction regimes. Our analysis reveal critical thresholds and bifurcations that determine species survival, with advection and nonlinear boundaries interacting to shape system dynamics. These findings generalize classical constant-flux models and offer a new framework for studying stability and bifurcation phenomena in reaction–advection–diffusion systems with biologically motivated boundary interactions.</div></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"387 \",\"pages\":\"Article 109507\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556425001336\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001336","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个具有非线性边界条件的反应-扩散-平流贻贝-藻类模型,该模型由流动水生环境中种群动态驱动。该系统表现出复杂的阈值行为,受能量转换效率、流速和边界介导损失的控制。我们建立了整体存在性、有界性的条件,并刻画了半平凡态和共存态。采用与非线性边界通量结构假设(H1)下的极大值原理相容的技术,结合超解和亚解方法,严格分析了持续和消光机制。我们的分析揭示了决定物种生存的临界阈值和分岔,平流和非线性边界相互作用形成系统动力学。这些发现推广了经典的常通量模型,为研究具有生物动力边界相互作用的反应-平流-扩散系统的稳定性和分岔现象提供了一个新的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow-driven dynamics in a mussel-algae system with nonlinear boundary interactions
We investigate a reaction–diffusion–advection mussel-algae model with nonlinear boundary conditions, motivated by population dynamics in flowing aquatic environments. The system exhibits complex threshold behavior governed by energy conversion efficiency, flow velocity, and boundary-mediated losses. We establish conditions for global existence, boundedness, and characterize semi-trivial and coexistence steady states. By employing techniques compatible with the maximum principle under the structural assumption (H1) on the nonlinear boundary flux, along with super- and sub-solution methods, we rigorously analyze the persistence and extinction regimes. Our analysis reveal critical thresholds and bifurcations that determine species survival, with advection and nonlinear boundaries interacting to shape system dynamics. These findings generalize classical constant-flux models and offer a new framework for studying stability and bifurcation phenomena in reaction–advection–diffusion systems with biologically motivated boundary interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信